GF(2)

GF(2) (also denoted , Z/2Z or ) is the finite field with two elements.[1][a]

GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual.

The elements of GF(2) may be identified with the two possible values of a bit and to the Boolean values true and false. It follows that GF(2) is fundamental and ubiquitous in computer science and its logical foundations.

Definition

GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted 0 and 1.

Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below:

+ 0 1
0 0 1
1 1 0

If the elements of GF(2) are seen as Boolean values, then the addition is the same as that of the logical XOR operation. Since each element equals its opposite, subtraction is thus the same operation as addition.

The multiplication of GF(2) is again the usual multiplication modulo 2 (see the table below), and on Boolean variables corresponds to the logical AND operation.

× 0 1
0 0 0
1 0 1

GF(2) can be identified with the field of the integers modulo 2, that is, the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers: GF(2) = Z/2Z.

Notations Z2 and may be encountered although they can be confused with the notation of 2-adic integers.

Properties

Because GF(2) is a field, many of the familiar properties of number systems such as the rational numbers and real numbers are retained:

  • addition has an identity element (0) and an inverse for every element;
  • multiplication has an identity element (1) and an inverse for every element but 0;
  • addition and multiplication are commutative and associative;
  • multiplication is distributive over addition.

Properties that are not familiar from the real numbers include:

  • every element x of GF(2) satisfies x + x = 0 and therefore x = x; this means that the characteristic of GF(2) is 2;
  • every element x of GF(2) satisfies x2 = x (i.e. is idempotent with respect to multiplication); this is an instance of Fermat's little theorem. GF(2) is the only field with this property (Proof: if x2 = x, then either x = 0 or x ≠ 0. In the latter case, x must have a multiplicative inverse, in which case dividing both sides by x gives x = 1. All larger fields contain elements other than 0 and 1, and those elements cannot satisfy this property).

Applications

Because of the algebraic properties above, many familiar and powerful tools of mathematics work in GF(2) just as well as other fields. For example, matrix operations, including matrix inversion, can be applied to matrices with elements in GF(2) (see matrix ring).

Any group (V,+) with the property v + v = 0 for every v in V is necessarily abelian and can be turned into a vector space over GF(2) in a natural fashion, by defining 0v = 0 and 1v = v for all v in V. This vector space will have a basis, implying that the number of elements of V must be a power of 2 (or infinite).

In modern computers, data are represented with bit strings of a fixed length, called machine words. These are endowed with the structure of a vector space over GF(2). The addition of this vector space is the bitwise operation called XOR (exclusive or). The bitwise AND is another operation on this vector space, which makes it a Boolean algebra, a structure that underlies all computer science. These spaces can also be augmented with a multiplication operation that makes them into a field GF(2n), but the multiplication operation cannot be a bitwise operation. When n is itself a power of two, the multiplication operation can be nim-multiplication; alternatively, for any n, one can use multiplication of polynomials over GF(2) modulo a irreducible polynomial (as for instance for the field GF(28) in the description of the Advanced Encryption Standard cipher).

Vector spaces and polynomial rings over GF(2) are widely used in coding theory, and in particular in error correcting codes and modern cryptography. For example, many common error correcting codes (such as BCH codes) are linear codes over GF(2) (codes defined from vector spaces over GF(2)), or polynomial codes (codes defined as quotients of polynomial rings over GF(2)).

Algebraic closure

Like any field, GF(2) has an algebraic closure. This is a field F which contains GF(2) as a subfield, which is algebraic over GF(2) (i.e. every element of F is a root of a polynomial with coefficients in GF(2)), and which is algebraically closed (any non-constant polynomial with coefficients in F has a root in F). The field F is uniquely determined by these properties, up to a field automorphism (i.e. essentially up to the notation of its elements).

F is countable and contains a single copy of each of the finite fields GF(2n); the copy of GF(2n) is contained in the copy of GF(2m) if and only if n divides m. The field F is countable and is the union of all these finite fields.

Conway realized that F can be identified with the ordinal number , where the addition and multiplication operations are defined in a natural manner by transfinite induction (these operations are however different from the standard addition and multiplication of ordinal numbers).[2] The addition in this field is simple to perform and is akin to Nim-addition; Lenstra has shown that the multiplication can also be performed efficiently.[3]

See also

References

  1. ^ GF is the initialism of Galois field, another name for finite fields.
  1. ^ Lidl, Rudolf; Niederreiter, Harald (1997). Finite fields. Encyclopedia of Mathematics and Its Applications. Vol. 20 (2nd ed.). Cambridge University Press. ISBN 0-521-39231-4. Zbl 0866.11069.
  2. ^ Conway, John H. (2000). On Numbers and Games (2nd ed.). Wellesley, Mass. p. 61. ISBN 978-1-56881-127-7.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ Lenstra, Hendrik (1977). "On the Algebraic Closure of Two" (PDF). Indagationes Mathematicae (Proceedings). 80 (5): 389–396. doi:10.1016/1385-7258(77)90053-1.

Read other articles:

Brigadir Jenderal TNI (Purn.)Junior TumilaarS.I.P., M.M. Inspektur Komando Daerah Militer XIII/MerdekaMasa jabatan9 April 2020 – 8 Oktober 2021 PendahuluSetio Budi RaharjoPenggantiDenny Rusano Indrayana Masengi Informasi pribadiLahir3 April 1964 (umur 59)Manado, Sulawesi UtaraSuami/istriSyane KastanyaAnak1. Diana Clarita Tumilaar2. Yosafat Tumilaar3. Juan Maichel Tumilaar4. Justin Engelbirth TumilaarAlma materAkademi Militer (1988)Karier militerPihak IndonesiaDinas/cabang...

 

 

Untuk salmon sebagai makanan, lihat Salmon (makanan). Untuk tokoh Alkitab yang bernama Salmon, lihat Salmon (tokoh Alkitab). Ilustrasi salmon pejantan dari beberapa spesies utama salmon Pasifik ketika musim kawin atau bertelur (gambar tidak proporsional dengan perbandingan sesungguhnya) Daging salmon alaska putih Salmon atau salem adalah jenis ikan dari famili Salmonidae. Ikan lain yang berada dalam satu famili dengan salmon adalah Trout. Perbedaan kedua jenis ikan tersebut antara lain: salmo...

 

 

Lokasi Meridian utama Negara-negara yang berada pada garis khatulistiwa (merah), sedangkan biru adalah negara-negara yang berada pada garis meridian utama. Meridian utama (Inggris: prime meridian) adalah meridian (garis bujur) yang bujurnya terletak di 0°. Saat ini, meridian utama yang digunakan secara internasional adalah garis bujur Greenwich, yang berawal dari Kutub Utara, melewati kota Greenwich, London Raya di Inggris, Prancis, Spanyol, Aljazair, Mali, Burkina Faso, Togo, dan Ghana,...

Sulawesi memiliki keragaman burung yang relatif miskin, kurang lebih 120 spesies lebih sedikit dibandingkan pulau lebih yang kecil seperti Pulau Jawa.[1] Namun Sulawesi menjadi salah satu daerah konservasi penting di Indonesia karena mendukung tingkat endemisitas burung yang tinggi. Tercatat 12 genus burung adalah endemik di Sulawesi.[1] Daftar di bawah ini adalah daftar jenis burung endemik di kawasan biogeografi Sulawesi.[1][2] Walaupun secara administratif K...

 

 

Offensive strategy in basketball This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: UCLA High Post Offense – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this template message) The UCLA High Post Offense is an offensive strategy in basketball, used by John Wooden, head coach at the Unive...

 

 

Not to be confused with Bauline East, Newfoundland and Labrador. Town in Newfoundland and Labrador, CanadaBaulineTownBaulineLocation of Bauline in NewfoundlandCoordinates: 47°42′N 52°49′W / 47.7°N 52.82°W / 47.7; -52.82CountryCanadaProvinceNewfoundland and LabradorGovernment • MayorCraig LeGrowArea[1] • Land15.94 km2 (6.15 sq mi)Population (2021)[2] • Total412 • Density28.3/km2 ...

Kamov Ka-50 & Ka-52 Le Kamov Ka-50 est un hélicoptère de combat très particulier : monoplace, rotors contrarotatifs, siège éjectable et canon à faible débattement. Rôle Hélicoptère de combat Constructeur / Kamov Premier vol 27 juin 1982 Mise en service 28 août 1987 Date de retrait Ka-52 toujours en service Nombre construit 196 (2022) Équipage 1/2 Motorisation Moteur Klimov TV3-117VMA Nombre 2 Type Turbomoteurs Puissance unitaire 2 190 ch Nombre de pales 2 × 3 ...

 

 

Giulio Classico (in latino Iulius Classicus) (... – ...; fl. I secolo) è stato un mercenario gallo che fu un prefetto dell'Impero romano coinvolto nella rivolta batava (69-70). Membro della tribù dei Treviri, Classico era prefetto di un'ala di Treviri dell'esercito romano del Reno, sotto il comando di Vitellio (69). Discendente della famiglia reale dei Treviri, i suoi antenati lo qualificavano come nemico di Roma, piuttosto che come sua alleato. Quando il comandante batavo dell'esercito r...

 

 

Deutsche Telekom AGJenisAktiengesellschaft (FWB: DTE, Pink Sheets: DTEGY)IndustriTelekomunikasiDidirikan1995 (Privatisasi)1996KantorpusatBonn, JermanWilayah operasiInternasionalTokohkunciClarence.W (CEO dan Chairman of the executive board), Ulrich Lehner (Chairman of the supervisory board)ProdukFixed-line dan Telepon seluler, broadband dan fixed-line servis internet, TI dan network servicesPendapatan (€ 058,169 milyar) (2012)[1]Laba operasi (€ 003,810 milyar) (2012)[1]Laba...

Highest juridical instance in Sweden Högsta domstolen redirects here. For the Finnish equivalent, see Supreme Court of Finland. Not to be confused with Supreme Administrative Court of Sweden. Supreme Court of SwedenHögsta domstolen59°19′34″N 18°03′59″E / 59.32611°N 18.06639°E / 59.32611; 18.06639Established15 May 1789LocationStockholm, SwedenCoordinates59°19′34″N 18°03′59″E / 59.32611°N 18.06639°E / 59.32611; 18.06639Co...

 

 

Kemenyan jawa, salah satu macam resin Tetesan resin yang membeku Resin, gala, ludan,atau embalau adalah eksudat (getah) yang dikeluarkan oleh banyak jenis tetumbuhan, terutama oleh jenis-jenis pohon runjung (konifer). Getah ini biasanya membeku, lambat atau segera, dan membentuk massa yang keras dan, sedikit banyak, transparan. Resin dipakai orang terutama sebagai bahan pernis, perekat, pelapis makanan (agar mengilat), bahan campuran dupa dan parfum, serta sebagai sumber bahan mentah bagi bah...

 

 

Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Casatejadacomune Casatejada – Veduta LocalizzazioneStato Spagna Comunità autonoma Estremadura Provincia Cáceres TerritorioCoordinate39°52′59.88″N 5°40′59.88″W...

Permanent Electoral AuthorityAutoritatea Electorală PermanentăAgency overviewFormed2001JurisdictionElections in RomaniaAgency executiveConstantin-Florin Mitulețu-Buică, PresidentWebsitehttp://www.roaep.ro/ Politics of Romania Constitution Referendums 1991 (adoption) 2003 (amendments) Constitutional Court Government President (list) Klaus Iohannis Prime Minister (list) Marcel Ciolacu Cabinet (current, list) Parliament Senate Acting President: Alina Gorghiu Standing Bureau Chamber of Deputi...

 

 

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

 

 

森川智之配音演员本名同上原文名森川 智之(もりかわ としゆき)罗马拼音Morikawa Toshiyuki昵称モリモリ[1]、帝王[1]国籍 日本出生 (1967-01-26) 1967年1月26日(57歲) 日本東京都品川區[1](神奈川縣川崎市[2]、橫濱市[3]成長)职业配音員、旁白、歌手、藝人音乐类型J-POP出道作品外國人取向的日語教材代表作品但丁(Devil May Cry)D-boy(宇宙騎...

American baseball player (born 1978) Baseball player Chris BootcheckBootcheck with the Yokohama BayStars in 2010PitcherBorn: (1978-10-24) October 24, 1978 (age 45)La Porte, Indiana, U.S.Batted: RightThrew: RightProfessional debutMLB: September 9, 2003, for the Anaheim AngelsNPB: May 5, 2010, for the Yokohama BayStarsKBO: July 15, 2011, for the Lotte GiantsLast appearanceNPB: July 16, 2010, for the Yokohama BayStarsKBO: October 5...

 

 

Governor of ConnecticutSeal of the governorIncumbentNed Lamontsince January 19, 2019Government of ConnecticutStyleGovernor(informally)His Excellency(formal)TypeHead of stateHead of governmentMember ofCabinetResidenceGovernor's ResidenceSeatConnecticut State Capitol, Hartford, ConnecticutNominatorPolitical partiesAppointerPopular voteTerm lengthFour years, no limitConstituting instrumentConstitution of ConnecticutPrecursorGovernor of Saybrook (merged with Connecticut, 1644)Governor of Ne...

 

 

Proposed national space programs This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (May 2013) (Learn how and when to remove this message) Some of this article's listed sources may not be reliable. Please help improve this articl...

← травень → Пн Вт Ср Чт Пт Сб Нд     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31     2024 рік 4 травня — 124-й день року (125-й у високосні роки) в григоріанському календарі. До кінця року залишається 241 день. Цей день в історії: 3 травня—4 травня—5 травня Зміст 1 Св...

 

 

الهيئة العامة للتعليم التطبيقي والتدريب معلومات التأسيس 1982 النوع هيئة حكومية المعاهد العالي للاتصالات والملاحةالعالي للطاقةالتدريب الصناعيالتمريضالتدريب الإنشائيالتدريب المهنيالعالي للخدمات الادارية السياحة والتجميل والأزياءحاضنة الشويخ الحرفيةالدورات التدريبية...