Pressure ridge (ice)

Hypothetical interaction between two floes, resulting in a pressure ridge —— a linear pile-up of sea ice fragments.
Internal structure of a first-year sea ice ridge, MOSAiC expedition, July 4, 2020.

A pressure ridge, when consisting of ice in an oceanic or coastal environment, is a linear pile-up of sea ice fragments formed in pack ice by accumulation in the convergence between floes.

Such a pressure ridge develops in an ice cover as a result of a stress regime established within the plane of the ice. Within sea ice expanses, pressure ridges originate from the interaction between floes,[note 1] as they collide with each other.[1] Currents and winds are the main driving forces, but the latter is particularly effective when they have a predominant direction.[2] Pressure ridges are made up of angular ice blocks of various sizes that pile up on the floes. The part of the ridge that is above the water surface is known as the sail; that below it as the keel.[note 2] Pressure ridges are the thickest sea ice features and account for up to 30–40% of the total sea ice area[3] and about one-half of the total sea ice volume.[4] Stamukhi are pressure ridges that are grounded and that result from the interaction between fast ice and the drifting pack ice.[5][6] Similar to undeformed ice, pressure ridges can be first-, second-, and multiyear depending on how many melt seasons they managed to survive. Ridges can be formed from ice of different ages, but mostly consist of 20–40 cm thick blocks of thin and young ice.[2]

Internal structure

Although ice pressure ridges vary greatly in shape (which also evolves in time), this diagram (not to scale) shows how a drifting ridge is often idealized.[7][4]
Field example of a pressure ridge. Only the sail is shown in this photograph. The keel is more difficult to document.
Pressure ridge at North Pole, expedition of University of Giessen, April 17, 1990
A pressure ridge in the Antarctic ice near Scott Base, with lenticular clouds in the sky.
Bottom topography of a first-year pressure ridge measured using underwater multibeam sonar during MOSAiC Expedition.

The blocks making up pressure ridges are mostly from the thinner ice floe involved in the interaction, but they can also include pieces from the other floe if it is not too thick.[1] In the summer, the ridge can undergo a significant amount of weathering, which turns it into a smooth hill. During this process, the ice loses its salinity (as a result of brine drainage and meltwater flushing). This is known as an aged ridge.[8] A fully consolidated ridge is one whose base has undergone complete freezing.[8] The term consolidated layer is used to designate the freezing up of the rubble just below the water line.[2] The existence of a consolidated layer depends on air temperature — in this layer, the water between individual blocks is frozen, with a resulting reduction in porosity and an increase in mechanical strength. A keel's depth of an ice ridge is much higher than its sail's height — typically about 3–5 times. The keel is also 2–3 times wider than the sail.[9] Ridges are usually melting faster than level ice, both at the surface[10] and at the bottom.[11] While first-year ridges melt approximately 4 times faster than surrounding level ice,[12] second-year ridges melt only 1.6 times faster than surrounding level ice.[10] Sea-ice ridges also play an important role in confining meltwater within under-ice meltwater layers, which may lead to the formation of false bottoms.[13] Ridges also play an important role in controlling the values of atmospheric drag coefficients.[14]

Thickness and consolidation

One of the largest pressure ridges on record had a sail extending 12 m above the water surface, and a keel depth of 45 m.[1] The total thickness for a multiyear ridge was reported to be 40 m.[15] On average, total thickness ranges between 5 m and 30 m,[4] with a mean sail height that remains below 2 m.[2] The average keel depth of Arctic ridges is 4.5 m. The sail height is usually proportional to the square root of the ridge block thickness. Ice ridges in Fram Strait usually have a trapezoidal shape with a bottom horizontal section covering around 17% of the total ridge width and with a mean draft of 7 m,[16] while ice ridges in the Chukchi and Beaufort Seas have a concave close to triangular shape.[17]

The average consolidated layer thickness of Arctic ridges is 1.6 m. Usually, ridges consolidate faster than level ice because of their initial macroporosity. Ridge rubble porosity (or water-filled void fraction of ridge unconsolidated part) is in the wide range of 10–40%. During winter, ice ridges consolidate up to two times faster than level ice, with the ratio of level ice and consolidated layer thickness proportional to the square root of ridge rubble porosity.[18] This results in 1.6–1.8 ratio of consolidated layer and level ice thickness by the end of winter season.[19] Meanwhile, snow is usually about three times thicker above ridges than above level ice.[20] Sometimes ridges can be found fully consolidated with the total thickness up to 8 m.[21] Ridges may also contain from 6% to 11% of snow mass fraction, which can be potentially linked to the mechanisms of ridge consolidation.[22] Fram Strait ridge observations suggest, that the largest part of ridge consolidation happens during the spring season when during warm air intrusions or dynamic events snow can enter ridge keels via open leads and increase the speed of ridge consolidation.[23] These observations are supported by high snow mass fraction in refrozen leads, observed during the spring season.[24] The ridge consolidation potentially reduces light levels and the habitable space available for organisms, which may have negative ecological impacts as ridges have been identified as ecological hotspots.

Characterization methods

The physical characterization of pressure ridges can be done using the following methods:[2]

Interest for pressure ridges

From an offshore engineering and naval perspective, there are three reasons why pressure ridges are a subject of investigation.[4] Firstly, the highest loads applied on offshore structures operating in cold oceans by drift ice are associated with these features.[29] Secondly, when pressure ridges drift into shallower areas, their keel may come into contact with the seabed, thereby representing a risk for subsea pipelines (see Seabed gouging by ice) and other seabed installations. Thirdly, they have a significant impact on navigation. In the Arctic, ridged ice makes up about 40% of the overall mass of sea ice.[9][3] First-year ridges with large macroporosity are important for the ice-associated sympagic communities and identified as potential ecological hotspots and proposed to serve as refugia of ice-associated organisms.[30]

See also

Notes

  1. ^ A floe is any individual piece of sea ice larger than 20 m (66 ft).
  2. ^ These terms also apply to any floating ice feature, such as icebergs.

References

  1. ^ a b c Weeks, W. F. (2010) On sea ice. University of Alaska Press, Fairbanks, 664 p.
  2. ^ a b c d e Strub-Klein, L. & Sudom, D. (2012). A comprehensive analysis of the morphology of first-year sea ice ridges. Cold Regions Science and Technology, 82, pp. 94–109.
  3. ^ a b Hansen, E., Ekeberg, O. ‐C., Gerland, S., Pavlova, O., Spreen, G., Tschudi, M. (2014), "Variability in categories of Arctic sea ice in Fram Strait", Journal of Geophysical Research: Oceans, 119 (10), American Geophysical Union (AGU): 7175–7189, Bibcode:2014JGRC..119.7175H, doi:10.1002/2014JC010048
  4. ^ a b c d Leppäranta, M. (2005). The Drift of Sea Ice. Springer-Verlag, New York, 266 p.
  5. ^ Barnes, P.W., D., McDowell & Reimnitz, E. (1978). Ice gouging characteristics: Their changing patterns from 1975-1977, Beaufort Sea, Alaska. United States Department of the Interior, Geological Survey Open File Report 78-730, Menlo Park, U.S.A., 42 p.
  6. ^ Ogorodov, S.A. & Arkhipov, V.V. (2010) Caspian Sea bottom scouring by hummocky ice floes. Doklady Earth Sciences, 432, 1, pp. 703-707.
  7. ^ Timco, G. W. & Burden, R. P. (1997). An analysis of the shapes of sea ice ridges. Cold Regions Science and Technology, 25, pp. 65-77.
  8. ^ a b http://nsidc.org/cryosphere/seaice/index.html Archived 2012-10-28 at the Wayback Machine.
  9. ^ a b Wadhams, P. (2000). Ice in the Ocean. Gordon and Breach Science Publ., London, 351 p.
  10. ^ a b Perovich, Donald K.; Grenfell, Thomas C.; Richter-Menge, Jacqueline A.; Light, Bonnie; Tucker, Walter B.; Eicken, Hajo (2003). "Thin and thinner: Sea ice mass balance measurements during SHEBA". Journal of Geophysical Research: Oceans. 108 (C3). American Geophysical Union (AGU): 8050. Bibcode:2003JGRC..108.8050P. doi:10.1029/2001jc001079. ISSN 0148-0227.
  11. ^ a b Amundrud, T. L. (2004), "Geometrical constraints on the evolution of ridged sea ice", Journal of Geophysical Research, 109 (C6), Bibcode:2004JGRC..109.6005A, doi:10.1029/2003JC002251
  12. ^ Salganik, Evgenii; Lange, Benjamin A.; Katlein, Christian; Matero, Ilkka; Anhaus, Philipp; Muilwijk, Morven; Høyland, Knut V.; Granskog, Mats A. (2023-11-20). "Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys". The Cryosphere. 17 (11). Copernicus GmbH: 4873–4887. Bibcode:2023TCry...17.4873S. doi:10.5194/tc-17-4873-2023. ISSN 1994-0424.
  13. ^ Salganik, Evgenii; Katlein, Christian; Lange, Benjamin A.; Matero, Ilkka; Lei, Ruibo; Fong, Allison A.; Fons, Steven W.; Divine, Dmitry; Ogiier, Marc; Castellani, Giulia; Bozzato, Deborah; Chamberlain, Emelia J.; Hoppe, Clara J.M.; Muller, Oliver; Gardner, Jessie.; Rinke, Annette; Pereira, Patric Simões; Ulfsbo, Adam; Marsay, Chris; Webster, Melinda A.; Maus, Sönke; Høyland, Knut V.; Granskog, Mats A. (2023). "Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance". Elementa: Science of the Anthropocene. 11 (1): 00035. Bibcode:2023EleSA..11...35S. doi:10.1525/elementa.2022.00035. hdl:10037/30456.
  14. ^ Mchedlishvili, Alexander; Lüpkes, Christof; Petty, Alek; Tsamados, Michel; Spreen, Gunnar (2023-09-21). "New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data". The Cryosphere. 17 (9). Copernicus GmbH: 4103–4131. Bibcode:2023TCry...17.4103M. doi:10.5194/tc-17-4103-2023. ISSN 1994-0424.
  15. ^ Johnston, M., Masterson, D. & Wright, B. (2009). Multi-year ice thickness: knowns and unknowns. Proceedings of the 20th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Luleå, Sweden.
  16. ^ Ekeberg, Ole-Christian; Høyland, Knut; Hansen, Edmond (January 2015). "Ice ridge keel geometry and shape derived from one year of upward looking sonar data in the Fram Strait". Cold Regions Science and Technology. 109: 78–86. Bibcode:2015CRST..109...78E. doi:10.1016/j.coldregions.2014.10.003. ISSN 0165-232X.
  17. ^ Metzger, Andrew T.; Mahoney, Andrew R.; Roberts, Andrew F. (23 December 2021). "The Average Shape of Sea Ice Ridge Keels". Geophysical Research Letters. 48 (24). Bibcode:2021GeoRL..4895100M. doi:10.1029/2021GL095100. eISSN 1944-8007. ISSN 0094-8276. OSTI 1865017.
  18. ^ Leppäranta, M., Hakala, R. (1992), "The structure and strength of first-year ice ridges in the Baltic Sea", Cold Regions Science and Technology, 20 (3): 295–311, Bibcode:1992CRST...20..295L, doi:10.1016/0165-232X(92)90036-T
  19. ^ Salganik, E., Høyland, K. V., Maus, S. (2020), "Consolidation of fresh ice ridges for different scales", Cold Regions Science and Technology, 171, Bibcode:2020CRST..17102959S, doi:10.1016/j.coldregions.2019.102959, hdl:11250/2824887
  20. ^ Itkin, P., Hendricks, S., Webster, M., Albedyll, L. von, Arndt, S., Divine, D., Jaggi, M., Oggier, M., Raphael, I., Ricker, R., Rohde, J., Schneebeli, M., Liston, G. E. (2023), "Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory", Elementa: Science of the Anthropocene, 11 (1): 00048, Bibcode:2023EleSA..11...48I, doi:10.1525/elementa.2022.00048, hdl:10037/30187
  21. ^ Marchenko, A. (2022), "Thermo-Hydrodynamics of Sea Ice Rubble", IUTAM Symposium on Physics and Mechanics of Sea Ice, IUTAM Bookseries, vol. 39, Springer International Publishing, pp. 203–223, doi:10.1007/978-3-030-80439-8_10, ISBN 978-3-030-80438-1
  22. ^ Lange, B. A., Salganik, E., Macfarlane, A., Schneebeli, M., Høyland, K., Gardner, J., Müller, O., Divine, D. V., Kohlbach, D., Katlein, C., Granskog, M. A. (2023), "Snowmelt contribution to Arctic first-year ice ridge mass balance and rapid consolidation during summer melt", Elementa: Science of the Anthropocene, 11, doi:10.1525/elementa.2022.00037, hdl:10037/30087
  23. ^ Salganik, E; Lange, BA; Itkin, P; Divine, D; Katlein, C; Nicolaus, M; Hoppmann, M; Neckel, N; Ricker, R; Høyland, KV; Granskog, MA (2023). "Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition". Elem Sci Anth. 11 (1). University of California Press: 00008. Bibcode:2023EleSA..11....8S. doi:10.1525/elementa.2023.00008. hdl:10037/29890. ISSN 2325-1026.
  24. ^ Clemens-Sewall, D; Polashenski, C; Frey, MM; Cox, CJ; Granskog, MA; Macfarlane, AR; Fons, SW; Schmale, J; Hutchings, JK; von Albedyll, L; Arndt, S; Schneebeli, M; Perovich, D (2023-06-23). "Snow Loss Into Leads in Arctic Sea Ice: Minimal in Typical Wintertime Conditions, but High During a Warm and Windy Snowfall Event". Geophysical Research Letters. 50 (12). American Geophysical Union (AGU). Bibcode:2023GeoRL..5002816C. doi:10.1029/2023gl102816. ISSN 0094-8276.
  25. ^ Leppäranta, M., Lensu, M., Kosloff, P., Veitch, B. (1995), "The life story of a first-year sea ice ridge", Cold Regions Science and Technology, 23 (3): 279–290, Bibcode:1995CRST...23..279L, doi:10.1016/0165-232X(94)00019-T
  26. ^ Kharitonov, V. V. (2008), "Internal structure of ice ridges and stamukhas based on thermal drilling data", Cold Regions Science and Technology, 52 (3): 302–325, Bibcode:2008CRST...52..302K, doi:10.1016/j.coldregions.2007.04.020
  27. ^ Salganik, E., Høyland, K. V., Shestov, A. (2021), "Medium-scale experiment in consolidation of an artificial sea ice ridge in Van Mijenfjorden, Svalbard", Cold Regions Science and Technology, 181, Bibcode:2021CRST..18103194S, doi:10.1016/j.coldregions.2020.103194, hdl:11250/2724604
  28. ^ Itkin, P., Hendricks, S., Webster, M., Albedyll, L. von, Arndt, S., Divine, D., Jaggi, M., Oggier, M., Raphael, I., Ricker, R., Rohde, J., Schneebeli, M., Liston, G. E. (2023), "Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory", Elementa: Science of the Anthropocene, 11 (1): 00048, Bibcode:2023EleSA..11...48I, doi:10.1525/elementa.2022.00048, hdl:10037/30187
  29. ^ Ervik, Åse; Nord, Torodd S.; Høyland, Knut V.; Samardzija, Ilija; Li, Hongtao (2019). "Ice-ridge interactions with the Norströmsgrund lighthouse: Global forces and interaction modes". Cold Regions Science and Technology. 158: 195–220. Bibcode:2019CRST..158..195E. doi:10.1016/j.coldregions.2018.08.020. ISSN 0165-232X.
  30. ^ Fernández-Méndez, M., Olsen, L. M., Kauko, H. M., Meyer, A., Rösel, A., Merkouriadi, I., Mundy, C. J., Ehn, J. K., Johansson, A. M., Wagner, P. M., Ervik, Å., Sorrell, B. K., Duarte, P., Wold, A., Hop, H., Assmy, P. (2018), "Algal Hot Spots in a Changing Arctic Ocean: Sea-Ice Ridges and the Snow-Ice Interface", Frontiers in Marine Science, 5, doi:10.3389/fmars.2018.00075, hdl:10037/12583

Read other articles:

Angin Sedang Berhembus(The Wind Is Blowing)(風は吹いているKaze Wa Fuiteru)Sampul edisi reguler yang ditampilkan oleh Veranda, Melody, dan HarukaSingel oleh JKT48Sisi-AKaze wa Fuiteiru (Angin Sedang Berhembus) / SenbatsuSisi-BKiss Datte Hidarikiki (Bahkan Ciumanmu Juga Kidal) / UndergirlsJuuryoku Sympathy (Simpati Gravitasi) / Team JEien Pressure (Selamanya Pressure) / Team KIIIWink wa Sankai (Kedipan 3 Kali) / Siswi Pelathan Generasi Ketiga, The Wind is Blowing / Senbatsu (Hanya edisi ...

 

Untuk pengertian lain silakan lihat Kremlin (disambiguasi) Kremlin ialah sebuah kota di Garfield County, Oklahoma, Amerika Serikat. Berpenduduk 240 jiwa pada sensus 2000. Geografi Kremlin terletak di 36°32′52″LU,97°49′56″BB(36.547642, -97.832236)[1]. Menurut Biro Sensus Amerika Serikat, luas kota ini 0,6 km² (0,2 mi²), semuanya tanah. Demografi Sejak sensus 2000, ada 240 jiwa, 98 rumah tangga, dan 72 keluarga yang tinggal di kota ini. Kepadatan penduduknya 370,7/km² (949,...

 

Титульный лист второго издания «Еврейства в музыке», опубликованного в 1869 году «Еврейство в музыке» (нем. Das Judenthum in der Musik) — эссе немецкого композитора Рихарда Вагнера, в котором он нападает на евреев в целом и на композиторов Джакомо Мейербера и Феликса Мендельсона...

Australian artist (1875–1963) For the American poet and author, see Margaret Junkin Preston. Margaret PrestonMargaret Preston outside her home in Berowra, 1936.BornMargaret Rose McPherson(1875-04-29)29 April 1875Port Adelaide, South Australia, AustraliaDied28 May 1963(1963-05-28) (aged 88)Mosman, New South Wales, AustraliaNationalityAustralianKnown forArtworksStyleModernismSpouseWilliam George Bill Preston Margaret Rose Preston (29 April 1875 – 28 May 1963) was an Australian pai...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (septembre 2009). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ?...

 

  لمعانٍ أخرى، طالع ليندن (توضيح). ليندن    شعار   الإحداثيات 50°32′00″N 8°39′00″E / 50.533333333333°N 8.65°E / 50.533333333333; 8.65   [1] تاريخ التأسيس 1977  تقسيم إداري  البلد ألمانيا[2]  خصائص جغرافية  المساحة 22.77 كيلومتر مربع (31 ديسمبر 2017)[3][4]  ا�...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

Gestreckter λ/2-Dipol (oben) und λ/2-Faltdipol Halbwellendipol einsetzbar von 1 GHz bis 4 GHz, durch unterschiedliche, wählbare Dipollängen, und verstellbarer Symmetrierung (Ring) Eine Dipolantenne (von lateinisch di ‚zwei‘; deutsch Zweipolantenne; auch Antennendipol) ist eine gestreckte Antenne, die aus zwei (ggf. gefalteten) geraden Metallstäben oder Drähten besteht. Sie wandelt hochfrequenten Wechselstrom und elektromagnetische Wellen ineinander um und kann daher sowohl zum ...

 

2018 film by David Leitch Deadpool 2Theatrical release posterDirected byDavid LeitchWritten by Rhett Reese Paul Wernick Ryan Reynolds Based onDeadpoolby Fabian NiciezaRob LiefeldProduced by Simon Kinberg Ryan Reynolds Lauren Shuler Donner Starring Ryan Reynolds Josh Brolin Morena Baccarin Julian Dennison Zazie Beetz T. J. Miller Brianna Hildebrand Jack Kesy CinematographyJonathan SelaEdited by Dirk Westervelt Craig Alpert Elísabet Ronaldsdóttir Music byTyler BatesProductioncompanies Marvel ...

Sports stadium Sick's StadiumAerial view in 1967, looking westSeattleLocation in the United StatesShow map of the United StatesSeattleLocation in WashingtonShow map of Washington (state)Address2700 Rainier Avenue SouthLocationRainier ValleySeattle, Washington, U.S.Coordinates47°34′48″N 122°17′53″W / 47.58°N 122.298°W / 47.58; -122.298OwnerEmil Sick (1938–1964)Sick family (1964–1965)City of Seattle (1965–1979)Capacity11,000 (1938)18,000 (April 1969)25...

 

  لمعانٍ أخرى، طالع الدمام (توضيح). مدينة الدمام الدمام[1]  الدمامشعار أمانة المنطقة الشرقية متضمنًا الدمام  خريطة الموقع تقسيم إداري البلد  السعودية[2] عاصمة لـ المنطقة الشرقية[3]  المنطقة المنطقة الشرقية المسؤولون أمير المنطقة سعود بن نايف بن عب�...

 

Pour les articles homonymes, voir Bavarois (homonymie) et bar. Austro-bavaroisBairisch-Österreichisch Pays Allemagne, Autriche, Italie, Suisse, République tchèque, Hongrie Nombre de locuteurs 14 millions (2012)[1] Classification par famille - langues indo-européennes - langues germaniques - langues germaniques occidentales - groupe germano-néerlandais - haut allemand - allemand supérieur - bavarois Codes de langue IETF bar ISO 639-3 bar Glottolog baye1239 Échantillon Muatterspròch Po...

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

习近平 习近平自2012年出任中共中央总书记成为最高领导人期间,因其废除国家主席任期限制、开启总书记第三任期、集权统治、公共政策与理念、知识水平和自述经历等争议,被中国大陸及其他地区的民众以其争议事件、个人特征及姓名谐音创作负面称呼,用以恶搞、讽刺或批评习近平。对习近平的相关负面称呼在互联网上已经形成了一种活跃、独特的辱包亚文化。 权力�...

 

List of events in the year 1189 ← 1188 1187 1186 1185 1184 1189 in Ireland → 1190 1191 1192 1193 1194 Centuries: 11th 12th 13th 14th Decades: 1160s 1170s 1180s 1190s 1200s See also:Other events of 1189 List of years in Ireland Incumbent Lord: John Events Giraldus Cambrensis (Gerald of Wales) writes Expugnato Hibernica about Henry II’s invasion of Ireland.[1] Royal charter was granted to Dundalk Hugh de Lacy, 1st Earl of Ulster was appointed Viceroy of Ireland Births This...

映画については「私刑 リンチ」をご覧ください。 殺人 殺人 暗殺 王殺し 快楽殺人 拡大自殺 カニバリズム 拷問殺人 私刑 ジェノサイド ジェンダーサイド (アンドロサイド フェミサイド) シリアルキラー(ヘルスケア・シリアルキラー) スプリー・キラー 大量殺人 同士討ち 乗物による突入攻撃 人身御供 放伐 民衆殺戮 名誉の殺人 法域によっては犯罪でない殺人 安楽死 �...

 

Not to be confused with European Open (disc golf), Ladies European Open, or Colgate European Open. For other uses, see European Open (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: European Open golf – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remov...

 

Island county in Wales For other places with the same name, see Anglesey (disambiguation) and Ynys Môn (disambiguation). Môn redirects here. For the radio station, see Môn FM. County in WalesIsle of Anglesey Ynys Môn (Welsh)CountyLeft to right: View on the coastal path towards WylfaBeaumaris CastleThe Celtic Gateway in Holyhead FlagCoat of armsSovereign StateUnited KingdomConstituent CountryWalesCounty CouncilIsle of AngleseyPreserved CountyGwyneddAdmin HQLlangefniLargest townHolyhea...

Непризнанное государство, автономия Российского государства (с 21 июня 1919 года)Кубанская народная республикаукр. Кубанська народна республіка Флаг Герб Гимн: «Ты Кубань, ты наша Родина» Кубанская НР на карте ←   → 28 января 1918 — март 1920 Столица Екатеринодар Крупне...

 

Society of Japan from 1603 to 1868 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Edo society – news · newspapers · books · scholar · JSTOR (July 2018) (Learn how and when to remove this message) A social hierarchy chart based on old academic theories. Such hierarchical diagrams were removed from Japanese t...