Population monotonicity

Population monotonicity (PM) is a principle of consistency in allocation problems. It says that, when the set of agents participating in the allocation changes, the utility of all agents should change in the same direction. For example, if the resource is good, and an agent leaves, then all remaining agents should receive at least as much utility as in the original allocation.[1]: 46–51 [2]

The term "population monotonicity" is used in an unrelated meaning in the context of apportionment of seats in the congress among states. There, the property relates to the population of an individual state, which determines the state's entitlement. A population-increase means that a state is entitled to more seats. This different property is described in the page state-population monotonicity.

In fair cake cutting

In the fair cake-cutting problem, classic allocation rules such as divide and choose are not PM. Several rules are known to be PM:

  • When the pieces may be disconnected, any function that maximizes a concave welfare function (a monotonically-increasing function of the utilities) is PM. This holds whether the welfare function operates on the absolute utilities or on the relative utilities. In particular, the Nash-optimal rule, absolute-leximin and relative-leximin rules, absolute-utilitarian and relative utilitarian rules are all PM.[3] It is an open question whether concavity of the welfare function is necessary for PM.
  • When the pieces must be connected, no Pareto-optimal proportional division rule is PM. The absolute-equitable rule and relative-equitable rules are weakly Pareto-optimal and PM.[4]

In fair house allocation

In the house allocation problem, a rule is PM and strategyproof and Pareto-efficient, if-and-only-if it assigns the houses iteratively, where at each iteration, at most two agents trade houses from their initial endowments.[5]

In fair item allocation

In the fair item allocation problem, the Nash-optimal rule is no longer PM. In contrast, round-robin item allocation is PM. Moreover, round-robin can be adapted to yield picking sequences appropriate for agents with different entitlements. Picking-sequences based on divisor methods are PM too.[6] However, a picking-sequence based on the quota method is not PM.

See also

References

  1. ^ Herve Moulin (2004). Fair Division and Collective Welfare. Cambridge, Massachusetts: MIT Press. ISBN 9780262134231.
  2. ^ Thomson, William (2011). Fair Allocation Rules. Handbook of Social Choice and Welfare. Vol. 2. pp. 393–506. doi:10.1016/s0169-7218(10)00021-3. ISBN 9780444508942.
  3. ^ Segal-Halevi, Erel; Sziklai, Balázs R. (2019-09-01). "Monotonicity and competitive equilibrium in cake-cutting". Economic Theory. 68 (2): 363–401. arXiv:1510.05229. doi:10.1007/s00199-018-1128-6. ISSN 1432-0479. S2CID 179618.
  4. ^ Segal-Halevi, Erel; Sziklai, Balázs R. (2018-09-01). "Resource-monotonicity and population-monotonicity in connected cake-cutting". Mathematical Social Sciences. 95: 19–30. arXiv:1703.08928. doi:10.1016/j.mathsocsci.2018.07.001. ISSN 0165-4896. S2CID 16282641.
  5. ^ Ehlers, Lars; Klaus, Bettina; Pápai, Szilvia (2002-11-01). "Strategy-proofness and population-monotonicity for house allocation problems". Journal of Mathematical Economics. 38 (3): 329–339. doi:10.1016/S0304-4068(02)00059-9. ISSN 0304-4068.
  6. ^ Chakraborty, Mithun; Schmidt-Kraepelin, Ulrike; Suksompong, Warut (2021-04-29). "Picking sequences and monotonicity in weighted fair division". Artificial Intelligence. 301: 103578. arXiv:2104.14347. doi:10.1016/j.artint.2021.103578. S2CID 233443832.
  7. ^ Sonmez, Tayfun O. (2014-09-01). "Population-Monotonicity of the Nucleolus on a Class of Public Good Problems". mpra.ub.uni-muenchen.de. Retrieved 2021-08-05.
  8. ^ Chen, Xin; Gao, Xiangyu; Hu, Zhenyu; Wang, Qiong (2019-01-17). "Population Monotonicity in Newsvendor Games". Management Science. 65 (5): 2142–2160. doi:10.1287/mnsc.2018.3053. ISSN 0025-1909.
  9. ^ Beviá, Carmen (1996-10-01). "Population monotonicity in economies with one indivisible good". Mathematical Social Sciences. 32 (2): 125–137. doi:10.1016/0165-4896(96)00814-1. ISSN 0165-4896.

Read other articles:

Artikel ini sudah memiliki referensi, tetapi tidak disertai kutipan yang cukup. Anda dapat membantu mengembangkan artikel ini dengan menambahkan lebih banyak kutipan pada teks artikel. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Taman Nasional Alas PurwoIUCN Kategori II (Taman Nasional)TN. Alas PurwoTampilkan peta BanyuwangiTN. Alas PurwoTampilkan peta Provinsi Jawa TimurTN. Alas PurwoTampilkan peta JawaTN. Alas PurwoTampilkan peta IndonesiaLokasi di Pulau JawaLetakJaw...

 

Finding Mr. RightPoster film untuk Finding Mr. RightSutradaraXue XiaoluProduser Bill Kong Mathew Tang Lu Hongshi Ditulis olehXue XiaoluPemeranTang Wei Wu XiuboPenata musikPeter KamSinematograferChan Chi-yingPenyuntingCheung ka-faiPerusahaanproduksi BDI Films Beijing H&H Communication Media Edko Films Edko (Beijing) Films China Movie Channel Tanggal rilis 14 Februari 2013 (2013-02-14) (penayangan perdana Hong Kong) 21 Maret 2013 (2013-03-21) (China) Durasi122 menitN...

 

American psychiatrist (1922–2009) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is in list format but may read better as prose. You can help by converting this article, if appropriate. Editing help is available. (July 2013) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: There are external links in the article, long lists e...

Penstabil membujur atau sirip ekor, dari pesawat, rudal atau bom biasanya ditemukan di ujung belakang dari pesawat, dan dimaksudkan untuk mengurangi aerodinamis side slip dan memberikan stabilitas arah. Hal ini analog dengan skeg di perahu dan kapal. Pada pesawat, penstabil membujur umumnya mengarah ke atas. Ini juga dikenal sebagai ekor membujur, dan merupakan bagian dari sebuah empennage pesawat. Trailing akhir penstabil yang biasanya bergerak, dan disebut kemudi, hal ini memungkinkan pilo...

 

Jalan Tol Lingkar Luar Jakarta 2JORR 2Informasi ruteDikelola oleh : PT Jasa Marga (Persero) Tbk (Benda–Limo) PT Translingkar Kita Jaya (Limo–Cimanggis) PT Cimanggis Cibitung Tollways (Cimanggis-Cibitung) PT Cibitung Tanjung Priok Port Tollways (Cibitung-Cilincing) Panjang:110.4 km (68,6 mi)Berdiri:27 Januari 2012; 12 tahun lalu (2012-01-27) – sekarangPersimpangan besarOrbit sekitar wilayah urban JabodetabekUjung Barat: Bandar Udara Internasional Soekarno-Hatta Jalan ...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Finnish video game developer This article is about the Finnish video game developer. For other uses, see Rovio. Rovio Entertainment OyjRovio's headquarters in Espoo, FinlandTrade nameRovioFormerlyRelude Oy (2003–2005)Rovio Mobile Oy (2005–2011)Rovio Entertainment Oy (2011–2017)Company typeSubsidiaryIndustryVideo gamesFounded10 November 2003; 20 years ago (2003-11-10) in Helsinki, FinlandFoundersNiklas HedJarno VäkeväinenKim DikertHeadquartersEspoo, FinlandNumber of l...

 

Este artículo o sección tiene referencias, pero necesita más para complementar su verificabilidad. Busca fuentes: «Fruta» – noticias · libros · académico · imágenesEste aviso fue puesto el 30 de marzo de 2016. Este artículo trata sobre el término de uso gastronómico. Para el término botánico, véase Fruto. Frutería en un mercado de Barcelona. Por fruta se entiende aquellos frutos comestibles obtenidos de plantas cultivadas o silvestres que, por su sabor g...

 

Canadian subscription video on demand service This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) ShomiType of businessJoint ventureType of site...

Salah satu sisi Piotrków Trybunalski Piotrków Trybunalski ialah ibu kota provinsi Łódź di Polandia. Kota ini memiliki penduduk sekitar 78.369 jiwa (2008). Kota kembar Esslingen, Jerman Vienne, Prancis Maladzyechna, Belarus Velenje, Slovenia Mosonmagyarovar, Hungaria Marijampolė, Lituania Rivne, Ukraina Pranala luar Wikimedia Commons memiliki media mengenai Piotrków Trybunalski. Situs resmi Foto Piotrków Diarsipkan 2009-04-28 di Wayback Machine. Artikel bertopik geografi atau tempat Po...

 

Invasion indonésienne du Timor oriental Informations générales Date 7 décembre 1975-26 mars 1979 Lieu Timor oriental Issue Victoire indonésienne Début de l'occupation indonésienne du Timor oriental Belligérants Indonésie Forces armées indonésiennes Timor oriental FRETILIN Données clés modifier L'invasion du Timor oriental commence le 7 décembre 1975 lorsque les forces armées indonésiennes envahissent ce pays nouvellement indépendant en prenant le prétexte de la lutte contre...

 

Shea Whigham nel 2018 Franklin Shea Whigham Jr. (Tallahassee, 5 gennaio 1969) è un attore statunitense. Indice 1 Biografia 2 Filmografia 2.1 Attore 2.1.1 Cinema 2.1.2 Televisione 2.2 Doppiatore 3 Doppiatori italiani 4 Altri progetti 5 Collegamenti esterni Biografia Nato in Florida, è figlio di Beth Whigham e dell'ex quarterback della Florida State University Frank Whigham; ha inoltre un fratello, Jack. Amante dello sport, da ragazzo ha giocato sia a calcio che a tennis. Ha frequentato per q...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

Roman cuisine of pan braised artichokes Carciofi alla romanaCourseAntipasto, contornoPlace of originItalyRegion or stateLazioServing temperatureWarm or room temperatureMain ingredientsArtichokes, lesser calamint, parsley, garlic  Media: Carciofi alla romana Carciofi alla romana (Italian: [karˈtʃɔːfi alla roˈmaːna]; lit. 'Roman-style artichokes') is a typical dish of Roman cuisine of pan braised artichokes. During spring-time in Rome, the dish is prepared in each h...

 

British rock band Bones UKBackground informationOriginCamden Town, LondonGenresRockYears active2014–presentLabelsSumerian Records, Luco Music GroupMembers Rosie Bones Carmen Vandenberg Heavy Websitewww.bones-uk.com Bones UK (stylized as BONES UK) is a rock band from Camden Town, London[1] consisting of lead vocalist / rhythm guitarist Rosie Bones, lead guitarist Carmen Vandenberg, and drummer Heavy.[clarification needed] Rosie Bones and Carmen Vandenberg met each other at th...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

 

English mechanical engineer and naval architect This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2010) (Learn how and when to remove this message) Samuel BenthamBorn11 January 1757 (1757-01-11)EnglandDied31 May 1831(1831-05-31) (aged 74)London, EnglandSpouseMary Sophia FordyceChildrenGeorge, Clara, Sarah, Mary LouisaRelativesJeremy Bentham (...