Share to: share facebook share twitter share wa share telegram print page

Peano–Jordan measure

In mathematics, the Peano–Jordan measure (also known as the Jordan content) is an extension of the notion of size (length, area, volume) to shapes more complicated than, for example, a triangle, disk, or parallelepiped.

It turns out that for a set to have Jordan measure it should be well-behaved in a certain restrictive sense. For this reason, it is now more common to work with the Lebesgue measure, which is an extension of the Jordan measure to a larger class of sets. Historically speaking, the Jordan measure came first, towards the end of the nineteenth century. For historical reasons, the term Jordan measure is now well-established for this set function, despite the fact that it is not a true measure in its modern definition, since Jordan-measurable sets do not form a σ-algebra. For example, singleton sets in each have a Jordan measure of 0, while , a countable union of them, is not Jordan-measurable.[1] For this reason, some authors[2] prefer to use the term Jordan content.

The Peano–Jordan measure is named after its originators, the French mathematician Camille Jordan, and the Italian mathematician Giuseppe Peano.[3]

Jordan measure of "simple sets"

A simple set is, by definition, a union of (possibly overlapping) rectangles.
The simple set from above decomposed as a union of non-overlapping rectangles.

Consider Euclidean space Jordan measure is first defined on Cartesian products of bounded half-open intervals that are closed at the left and open at the right with all endpoints and finite real numbers (half-open intervals is a technical choice; as we see below, one can use closed or open intervals if preferred). Such a set will be called a -dimensional rectangle, or simply a rectangle. The Jordan measure of such a rectangle is defined to be the product of the lengths of the intervals:

Next, one considers simple sets, sometimes called polyrectangles, which are finite unions of rectangles, for any

One cannot define the Jordan measure of as simply the sum of the measures of the individual rectangles, because such a representation of is far from unique, and there could be significant overlaps between the rectangles.

Luckily, any such simple set can be rewritten as a union of another finite family of rectangles, rectangles which this time are mutually disjoint, and then one defines the Jordan measure as the sum of measures of the disjoint rectangles.

One can show that this definition of the Jordan measure of is independent of the representation of as a finite union of disjoint rectangles. It is in the "rewriting" step that the assumption of rectangles being made of half-open intervals is used.

Extension to more complicated sets

A set (represented in the picture by the region inside the blue curve) is Jordan measurable if and only if it can be well-approximated both from the inside and outside by simple sets (their boundaries are shown in dark green and dark pink respectively).

Notice that a set which is a product of closed intervals, is not a simple set, and neither is a ball. Thus, so far the set of Jordan measurable sets is still very limited. The key step is then defining a bounded set to be Jordan measurable if it is "well-approximated" by simple sets, exactly in the same way as a function is Riemann integrable if it is well-approximated by piecewise-constant functions.

Formally, for a bounded set define its inner Jordan measure as and its outer Jordan measure as where the infimum and supremum are taken over simple sets The set is said to be a Jordan measurable set if the inner measure of equals the outer measure. The common value of the two measures is then simply called the Jordan measure of . The Jordan measure is the set function that sends Jordan measurable sets to their Jordan measure.

It turns out that all rectangles (open or closed), as well as all balls, simplexes, etc., are Jordan measurable. Also, if one considers two continuous functions, the set of points between the graphs of those functions is Jordan measurable as long as that set is bounded and the common domain of the two functions is Jordan measurable. Any finite union and intersection of Jordan measurable sets is Jordan measurable, as well as the set difference of any two Jordan measurable sets. A compact set is not necessarily Jordan measurable. For example, the ε-Cantor set is not. Its inner Jordan measure vanishes, since its complement is dense; however, its outer Jordan measure does not vanish, since it cannot be less than (in fact, is equal to) its Lebesgue measure. Also, a bounded open set is not necessarily Jordan measurable. For example, the complement of the fat Cantor set (within the interval) is not. A bounded set is Jordan measurable if and only if its indicator function is Riemann-integrable, and the value of the integral is its Jordan measure.[1]

Equivalently, for a bounded set the inner Jordan measure of is the Lebesgue measure of the topological interior of and the outer Jordan measure is the Lebesgue measure of the closure.[4] From this it follows that a bounded set is Jordan measurable if and only if its topological boundary has Lebesgue measure zero. (Or equivalently, if the boundary has Jordan measure zero; the equivalence holds due to compactness of the boundary.)

The Lebesgue measure

This last property greatly limits the types of sets which are Jordan measurable. For example, the set of rational numbers contained in the interval [0,1] is then not Jordan measurable, as its boundary is [0,1] which is not of Jordan measure zero. Intuitively however, the set of rational numbers is a "small" set, as it is countable, and it should have "size" zero. That is indeed true, but only if one replaces the Jordan measure with the Lebesgue measure. The Lebesgue measure of a set is the same as its Jordan measure as long as that set has a Jordan measure. However, the Lebesgue measure is defined for a much wider class of sets, like the set of rational numbers in an interval mentioned earlier, and also for sets which may be unbounded or fractals. Also, the Lebesgue measure, unlike the Jordan measure, is a true measure, that is, any countable union of Lebesgue measurable sets is Lebesgue measurable, whereas countable unions of Jordan measurable sets need not be Jordan measurable.

References

  1. ^ While a set whose measure is defined is termed measurable, there is no commonly accepted term to describe a set whose Jordan content is defined. Munkres (1991) suggests the term "rectifiable" as a generalization of the use of this term to describe curves. Other authors have used terms including "admissible" (Lang, Zorich); "pavable" (Hubbard); "have content" (Burkill); "contented" (Loomis and Sternberg).
  2. ^ Munkres, J. R. (1991). Analysis on Manifolds. Boulder, CO: Westview Press. p. 113. ISBN 0-201-31596-3.
  3. ^ G. Peano, "Applicazioni geometriche del calcolo infinitesimale", Fratelli Bocca, Torino, 1887.
  4. ^ Frink, Orrin Jr. (July 1933). "Jordan Measure and Riemann Integration". The Annals of Mathematics. 2. 34 (3): 518–526. doi:10.2307/1968175. ISSN 0003-486X. JSTOR 1968175.
  • Emmanuele DiBenedetto (2002). Real analysis. Basel, Switzerland: Birkhäuser. ISBN 0-8176-4231-5.
  • Richard Courant; Fritz John (1999). Introduction to Calculus and Analysis Volume II/1: Chapters 1–4 (Classics in Mathematics). Berlin: Springer. ISBN 3-540-66569-2.

Read other articles:

إم-25 النوع محرك شعاعي الصانع شفيتسوف الكمية المصنوعة 13888 تطور من رايت آر-1860 تعديل مصدري - تعديل   رايت آر-1820-إف 3 توبوليف تو-4 بوينغ بي-29 سوبر فورترس بوليكاربوف أي-15 مكرر بوليكاربوف أي-153 كان شفيتسوف إم-25 محرك طائرة شعاعي أنتجه الاتحاد السوفيتي في 1930 , 1940 كنسخة مرخصة من محرك رايت…

Derechos LGBT en RumaniaBanderaEscudo Rumania en EuropaHomosexualidadEs legal Desde 1996Edad de consentimiento sexualHeterosexual y homosexual igual Edad de consentimiento homosexual 15Protección legal contra la discriminaciónLaboral Bienes y servicios En todos los aspectos Protección legal de parejaAcceso igualitario a la unión civil Matrimonio entre personas del mismo sexo Derechos reproductivos y de adopciónAcceso igualitario a la adopción monoparental Derecho de adopción conjunta Acce…

العلاقات السيشلية اللاوسية سيشل لاوس   سيشل   لاوس تعديل مصدري - تعديل   العلاقات السيشلية اللاوسية هي العلاقات الثنائية التي تجمع بين سيشل ولاوس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة سيشل لاوس المساحة (

Туре Эрьясетернорв. Tore Ørjasæter Дата рождения 3 марта 1886(1886-03-03)[1][2] Место рождения Шок, Оппланн, Норвегия Дата смерти 29 февраля 1968(1968-02-29)[1][3][…] (81 год) Место смерти Шок, Оппланн, Норвегия Гражданство (подданство)  Норвегия Род деятельности писатель, поэт Язы…

18 مايو: أحفورة جديدة تُعيد تعريف الأزِندوساورس كزاحف بدائي غريب بدلاً من ديناصور (1). 18 مايو: دراسة تخلص إلى أن التغيرات المناخية لعبت دوراً كبراً في الانقراض الجماعي للثدييات قبل 50,000 مليون عام (2). 17 مايو: اكتشفت حضانة لقرش عملاق منقرض في بنما (3). 17 مايو: نماذج جغارافية مُحسّنة ت

Radio station in Dickinson, North Dakota For the airport in Cadillac, Michigan assigned the ICAO code KCAD, see Wexford County Airport. KCADDickinson, North DakotaFrequency99.1 MHzBranding99.1 KCADProgrammingFormatCommercial; CountryAffiliationsPremiere NetworksOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsKLTC, KZRXHistoryFirst air date1996; 27 years ago (1996)Technical informationClassC1ERP100,000 wattsHAAT122 meters (400 ft)LinksWebcastListen LiveWebs…

Juan Bautista Aguirre y Carbo Información personalOtros nombres Joanne Baptista de AguirreNacimiento 11 de abril de 1725 Daule, actual Ecuador EcuadorFallecimiento 15 de junio de 1786 (61 años)Tívoli, Italia ItaliaNacionalidad EcuatorianaReligión Iglesia católica FamiliaPadres Carlos Aguirre Ponce de Solís Teresa Carbo CerezoInformación profesionalOcupación Sacerdote, poeta, científicoCargos ocupados Catedrático de la Universidad San Gregorio Magno Superior del Convento …

Bridge over the Rhine This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Theodor Heuss Bridge Düsseldorf – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) Theodor Heuss BridgeThe Theodor Heuss Bridge in DüsseldorfCoordinates51°14′49″N 6°45

Niederranna (Dorf)Ortschaft Niederranna (Gemeinden Hofkirchen, Pfarrkirchen) (Österreich) Basisdaten Pol. Bezirk, Bundesland Rohrbach (RO), Oberösterreich Gerichtsbezirk Rohrbach Pol. Gemeinde Hofkirchen im Mühlkreis  (KG Marsbach) Koordinaten 48° 28′ 8″ N, 13° 47′ 20″ O48.46890113.789003290Koordinaten: 48° 28′ 8″ N, 13° 47′ 20″ O Höhe 290 m ü. A. Einwohner der O…

Ne doit pas être confondu avec Rue du Général-Bertrand (Liège). Cet article est une ébauche concernant Paris. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 7e arrtRue du Général-Bertrand Rue du Général-Bertrand vue depuis la rue Éblé. Situation Arrondissement 7e Quartier École-Militaire Début Rue Éblé Fin Rue de Sèvres Historique Création 1790 Dénomination 1847 Ancien nom Rue des Acacias, ru…

Bupati Ngada Republik IndonesiaBadge Bupati NgadaPetahanaDrs. Paulus Soli Woasejak 2018Masa jabatan5 tahunDibentuk1961Pejabat pertamaDon J.D Da SilvaSitus webngadakab.go.id Berikut adalah Daftar Bupati Kabupaten Ngada, Nusa Tenggara Timur, Indonesia dari masa ke masa.[1] Daftar Bupati dan Wakil Bupati Kabupaten Ngada No. Nama Bupati Awal Jabatan Akhir jabatan Wakil Bupati Ket. 1 Don Joseph Daniel Ximenes da Silva 1961 1966 2 Jan Jos Botha 1967 1978 3 Drs. Matheus Djhon Bey 1978 1986…

2017 single by Carly PearceEvery Little ThingSingle by Carly Pearcefrom the album Every Little Thing ReleasedFebruary 22, 2017 (2017-02-22)GenreCountryLength3:03LabelBig MachineSongwriter(s)Carly PearcebusbeeEmily ShackeltonProducer(s)busbee[1]Carly Pearce singles chronology Wasn't That Drunk (2016) Every Little Thing (2017) Hide the Wine (2017) Every Little Thing is a debut song co-written and recorded by American country music singer Carly Pearce. After receiving airplay…

Species of flowering plant Calochortus subalpinus Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Order: Liliales Family: Liliaceae Genus: Calochortus Species: C. subalpinus Binomial name Calochortus subalpinusPiper Synonyms[1] Calochortus lobbii Purdy Calochortus subalpinus, the subalpine mariposa lily, is a North American species of flowering plants in the lily family native to the northwestern United States (States of Washington …

此條目需要精通或熟悉佛學的编者参与及协助编辑。 (2020年3月25日)請邀請適合的人士改善本条目。更多的細節與詳情請參见討論頁。另見其他需要佛學專家關注的頁面。 《入菩薩行論》原名Bodhisattvacaryāvatāra作者寂天译者天息災、釋隆蓮、釋如石语言梵文主题佛教、大乘、中觀派發行信息出版地印度被引用 菩提道次第廣論 澄清寶珠論 印度那爛陀寺時代的佛教哲學 地點那爛…

GorgonaStato Italia Regione Toscana Provincia Livorno Comune Livorno Altitudine254 m s.l.m. Codice WMO16154 Codice ICAOLIQG T. media gennaio(1951-1980) 8,6 °C T. media luglio(1951-1980) 22,1 °C T. media annua(1951-1980) 14,6 °C T. max. assoluta34,1 °C T. min. assoluta-5,4 °C Prec. medie annue(1951-1980) 567 mm Coordinate43°25′41.49″N 9°53′38.4″E / 43.428192°N 9.894001°E43.428192; 9.894001Coordinate: 43°…

2006 remix album by Stereo TotalDiscothequeRemix album by Stereo TotalReleased2006, 20 JanuaryGenreElectronicLabelDisko BStereo Total chronology Do the Bambi(2005) Discotheque(2006) Paris-Berlin(2007) Discotheque is a remix album released by Stereo Total in 2005. It features covers of Motormark's I hate everybody in the discoteque, the Rolling Stones' Mother's Little Helper, Velvet Underground's Stephanie says with new lyrics by Taxigirl, and Serge Gainsbourgs Bad News from the stars. Ot…

Nasal decongestant XylometazolineClinical dataPronunciation/ˌzaɪloʊˌmɛtəˈzoʊliːn/ZY-lo-MET-ə-ZOH-leen Trade namesOtrivin, Otrivine, othersAHFS/Drugs.comMonographMedlinePlusa608026License data US DailyMed: Xylometazoline Pregnancycategory C DependenceliabilityModerateRoutes ofadministrationintranasal (spray or drops)Drug classα1 and α2 adrenergic receptor agonistATC codeR01AA07 (WHO) S01GA03 (WHO)Legal statusLegal status In general: Over-the-counter …

Canadian actor, singer, and songwriter (born 1955) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Robert Marien – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to rem…

Kenyan long-distance runner Kirui overtaking Deriba Merga at the 2012 New York Half Marathon Peter Cheruiyot Kirui (born 2 January 1988) is a Kenyan professional long-distance runner who competes over 10,000 metres on the track and in road running competitions. He was the 2011 Kenyan champion over 10,000 m and came sixth at the 2011 World Championships in Athletics. He has acted as a pacemaker for major marathons (including Patrick Makau's world record in 2011) and has a marathon best of 2:…

Опис файлу Опис Літня людина 80-ти років стоїть на голові без допомоги рук, Голлівуд Джерело Власна робота Час створення 15 лютого 2017 Автор зображення Shustov Ліцензія див. нижче Ліцензування Увага: це зображення не може бути завантажене до Wikimedia Commons. Через значно суворішу політ…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.116.23.218