Pasch's axiom

In geometry, Pasch's axiom is a statement in plane geometry, used implicitly by Euclid, which cannot be derived from the postulates as Euclid gave them.[1] Its essential role was discovered by Moritz Pasch in 1882.[2]

Statement

Two lines (in black) meeting a triangle side internally and meeting the other sides internally and externally

The axiom states that,[3]

Pasch's axiom — Let A, B, C be three points that do not lie on a line and let a be a line in the plane ABC which does not meet any of the points A, B, C. If the line a passes through a point of the segment AB, it also passes through a point of the segment AC, or through a point of segment BC.

The fact that segments AC and BC are not both intersected by the line a is proved in Supplement I,1, which was written by P. Bernays.[4]

A more modern version of this axiom is as follows:[5]

A more modern version of Pasch's axiom — In the plane, if a line intersects one side of a triangle internally then it intersects precisely one other side internally and the third side externally, if it does not pass through a vertex of the triangle.

(In case the third side is parallel to our line, we count an "intersection at infinity" as external.) A more informal version of the axiom is often seen:

A more informal version of Pasch's axiom — If a line, not passing through any vertex of a triangle, meets one side of the triangle then it meets another side.

History

Pasch published this axiom in 1882,[2] and showed that Euclid's axioms were incomplete. The axiom was part of Pasch's approach to introducing the concept of order into plane geometry.

Equivalences

In other treatments of elementary geometry, using different sets of axioms, Pasch's axiom can be proved as a theorem;[6] it is a consequence of the plane separation axiom when that is taken as one of the axioms. Hilbert uses Pasch's axiom in his axiomatic treatment of Euclidean geometry.[7] Given the remaining axioms in Hilbert's system, it can be shown that Pasch's axiom is logically equivalent to the plane separation axiom.[8]

Hilbert's use of Pasch's axiom

David Hilbert uses Pasch's axiom in his book Foundations of Geometry which provides an axiomatic basis for Euclidean geometry. Depending upon the edition, it is numbered either II.4 or II.5.[7] His statement is given above.

In Hilbert's treatment, this axiom appears in the section concerning axioms of order and is referred to as a plane axiom of order. Since he does not phrase the axiom in terms of the sides of a triangle (considered as lines rather than line segments) there is no need to talk about internal and external intersections of the line a with the sides of the triangle ABC.

Caveats

Pasch's axiom is distinct from Pasch's theorem which is a statement about the order of four points on a line. However, in literature there are many instances where Pasch's axiom is referred to as Pasch's theorem. A notable instance of this is Greenberg (1974, p. 67).

Pasch's axiom should not be confused with the Veblen-Young axiom for projective geometry,[9] which may be stated as:

Veblen-Young axiom for projective geometry —  If a line intersects two sides of a triangle, then it also intersects the third side.

There is no mention of internal and external intersections in the statement of the Veblen-Young axiom which is only concerned with the incidence property of the lines meeting. In projective geometry the concept of betweeness (required to define internal and external) is not valid and all lines meet (so the issue of parallel lines does not arise).

Notes

  1. ^ It can, however, be derived from weaker axioms of plane separation taken for granted by Euclid, as shown in Pambuccian 2024
  2. ^ a b Pasch 1912, p. 21
  3. ^ This is taken from the Unger translation of the 10th edition of Hilbert's Foundations of Geometry and is numbered II.4.
  4. ^ Hilbert 1999, p. 200, the Unger translation.
  5. ^ Beutelspacher & Rosenbaum 1998, p. 7
  6. ^ Wylie, Jr. 1964, p. 100
  7. ^ a b axiom II.5 in Hilbert's Foundations of Geometry (Townsend translation referenced below), in the authorized English translation of the 10th edition translated by L. Unger (also published by Open Court) it is numbered II.4. There are several differences between these translations.
  8. ^ only Hilbert's axioms I.1,2,3 and II.1,2,3 are needed for this. Proof is given in Faber (1983, pp. 116–117).
  9. ^ Beutelspacher & Rosenbaum 1998, p. 6

References

  • Beutelspacher, Albrecht; Rosenbaum, Ute (1998), Projective geometry: from foundations to applications, Cambridge University Press, ISBN 978-0-521-48364-3, MR 1629468
  • Faber, Richard L. (1983), Foundations of Euclidean and Non-Euclidean Geometry, New York: Marcel Dekker, Inc., ISBN 978-0-8247-1748-3
  • Greenberg, Marvin Jay (1974), Euclidean and Non-Euclidean Geometries: Development and History (1st ed.), San Francisco: W.H. Freeman, ISBN 978-0-7167-0454-6
    • Greenberg, Marvin Jay (2007), Euclidean and Non-Euclidean Geometries: Development and History (4th ed.), San Francisco: W.H. Freeman, ISBN 978-0-7167-9948-1
  • Hilbert, David (1903), Grundlagen der Geometrie (in German), Leipzig: B.G. Teubner
    • Hilbert, David (1950) [1902], The Foundations of Geometry (PDF), translated by Townsend, E. J., LaSalle, IL: Open Court Publishing
    • Hilbert, David (1999) [1971], Foundations of Geometry, translated by Unger, Leo (2nd ed.), LaSalle, IL: Open Court Publishing, ISBN 978-0-87548-164-7
  • Moise, Edwin (1990), Elementary Geometry from an Advanced Standpoint (Third ed.), Addison-Wesley, Reading, MA, p. 74, ISBN 978-0-201-50867-3
  • Pambuccian, Victor (2011), "The axiomatics of ordered geometry: I. Ordered incidence spaces.", Expositiones Mathematicae (29): 24–66, doi:10.1016/j.exmath.2010.09.004
  • Pambuccian, Victor (2024), "Why did Euclid not need the Pasch axiom?.", Journal of Geometry (115), doi:10.1007/s00022-024-00712-x
  • Pasch, Moritz (1912) [first edition 1882], Vorlesungen uber neuere Geometrie (in German) (2nd ed.), Leipzig: B.G. Teubner
  • Wylie, Jr., Clarence Raymond (1964), Foundations of Geometry, New York: McGraw-Hill, ISBN 978-0-070-72191-3
    • Wylie, Jr., C.R. (2009) [1964], Foundations of Geometry, Mineola, New York: Dover Publications, ISBN 978-0-486-47214-0

Read other articles:

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Topik artikel ini mungkin tidak memenuhi kriteria kelayakan umum. Harap penuhi kelayakan artikel dengan: menyertakan sumber-sumber tepercaya yang independen terhadap subjek dan sebaiknya hindari sumber-sumber trivial. Jika tidak dipenuhi, artikel ini harus digabungkan, dialihkan ke cak...

 

Pour les articles homonymes, voir Amazone. AmazoneMarañón, Apurímac, Ene, Tambo, Ucayali, Amazonas, Solimões Vue satellite de l'embouchure de l'Amazone. Carte du bassin de l'Amazone, avec le fleuve surligné. Caractéristiques Longueur entre 6 259 et 6 992 km, voire 7 025 km [a] Bassin 6 112 000 km2 Bassin collecteur bassin amazonien Débit moyen 209 000 m3/s (embouchure) Nombre de Strahler 12[1] Régime pluvial tropical Cours Source Falaise d...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري البرازيلي الدرجة الثالثة الموسم الحاليالدوري البرازيلي الدرجة الثالثة 2018   الجهة المنظمة الات...

برويز قليج خاني معلومات شخصية الميلاد 4 ديسمبر 1945 (العمر 78 سنة)طهران الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب وسط الجنسية الدولة البهلوية  مسيرة الشباب سنوات فريق Adeeb Alborz المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1962–1968 كيان طهران 1968–1971 استقلال طهران 1971–1972 باس طهران 1972–1974 ...

 

Untuk stasiun televisi lokal RTV di Malang, lihat RTV Malang. Untuk kegunaan lain, lihat NDTV (disambiguasi). New Delhi Television LimitedJenisPerusahaan publikKode emiten(BSE: 532529, NSE: NDTV)IndustriMediaDidirikan1988PendiriRadhika Roy, Prannoy RoyKantorpusatNew Delhi, IndiaWilayah operasi IndiaTokohkunciPrannoy Roy (Co-ketua)Radhika Roy (Co-ketua) K. V. L. Narayan Rao (Wakil-ketua Eksekutif)Vikramaditya Chandra (CEO)ProdukPenyiaran, situs web, aplikasi mobilePendapatan₹4,96 m...

 

Cet article concerne la série télévisée. Pour le film, voir Scènes de ménage. Cet article ou cette section contient des informations sur une série télévisée en cours de production, programmée ou prévue. Le texte est susceptible de contenir des informations spéculatives et son contenu peut être nettement modifié au fur et à mesure de l’avancement de la série et des informations disponibles s’y rapportant.La dernière modification de cette page a été faite le 18 avri...

Town in the Republic of Karelia, Russia Town in Republic of Karelia, RussiaSortavala СортавалаTown[1]An aerial view of the town center of Sortavala in 2020. FlagCoat of armsLocation of Sortavala SortavalaLocation of SortavalaShow map of RussiaSortavalaSortavala (Karelia)Show map of KareliaCoordinates: 61°42′20″N 30°41′45″E / 61.70556°N 30.69583°E / 61.70556; 30.69583CountryRussiaFederal subjectRepublic of Karelia[1]First mentioned14...

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

جزء من سلسلة مقالات سياسة فلسطينفلسطين الدستور القانون الأساسي الفلسطيني (الدستور) الميثاق الوطني حقوق الإنسان السلطة التنفيذية الرئيس محمود عباس مجلس الوزراء الفلسطيني رئيس الوزراء محمد اشتية السلطة التشريعية المجلس الوطني الفلسطيني المجلس التشريعي الفلسطيني السلطة ...

Barrio Las Peñas. Las Peñas es un barrio emblemático de la ciudad de Guayaquil. Es reconocido por su estilo arquitectónico colonial y por ser el lugar donde nació la ciudad. Se encuentra ubicado en las faldas del Cerro Santa Ana y su nombre se debe justamente a la cantidad de peñascos que poseía el cerro[1]​ al momento en que los españoles se asentaron allí, en el siglo XVI.[2]​ En sus inicios era hogar principalmente de pescadores y artesanos, pero a partir del boom...

 

العلاقات الزامبية القطرية زامبيا قطر   زامبيا   قطر تعديل مصدري - تعديل   العلاقات الزامبية القطرية هي العلاقات الثنائية التي تجمع بين زامبيا وقطر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة زامبيا قطر المس...

 

Generalizations and stereotypes linked to racism against African Americans For stereotypes about the inhabitants of Africa, see Stereotypes of Africans. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Stereotypes of African Americans – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how a...

Census-designated place in Nevada, United StatesRachel, NevadaCensus-designated place Clockwise from top: The Little A'Le'Inn Inside the Little A'Le'Inn on May 2014 Independence Day 4 time capsule installed by the production team outside the A'Le'Inn A tow truck towing a crashed UFO, a local art installation Sign for and view of Rachel, Nevada northbound on the Extraterrestrial Highway The Alienstock music festival hosted to celebrate the storming of Area 51 Rachel, as seen from Highway 375,...

 

First period of the Mesozoic Era 252–201 million years ago Triassic251.902 ± 0.024 – 201.4 ± 0.2 Ma PreꞒ Ꞓ O S D C P T J K Pg N A map of the world as it appeared during the Late Triassic, c. 220 Ma[citation needed]Chronology−255 —–−250 —–−245 —–−240 —–−235 —–−230 —–−225 —–−220 —–−215 ...

 

List of Kings of Hungary This is a list of Hungarian monarchs; it includes the grand princes (895–1000) and the kings and ruling queens of Hungary (1000–1918). Holy Crown of Hungary The Hungarian Grand Principality was established around 895, following the 9th-century Hungarian conquest of the Carpathian Basin. The Kingdom of Hungary existed from 1000–1001 with the coronation of King Saint Stephen. The Árpád dynasty, the male-line descendants of Grand Prince Árpád, ruled Hungary con...

كارل تيودور ناخب بالاتينات فترة الحكم31 ديسمبر 1742 - 30 ديسمبر 1777 كارل فيليب الثالث   ناخب بافارياناخب بالاتينات-الراين فترة الحكم30 ديسمبر 1777 - 16 فبراير 1799 ماكسيمليان الثالث يوزف ماكسيمليان الرابع يوزف معلومات شخصية الميلاد 11 ديسمبر 1724 [1]  الوفاة 16 فبراير 1799 (74 سنة) [...

 

هاكوداته    علم شعار الاسم الرسمي (باليابانية: 函館市)‏    الإحداثيات 41°46′07″N 140°43′44″E / 41.768666666667°N 140.72891666667°E / 41.768666666667; 140.72891666667   [1] تاريخ التأسيس 1 أغسطس 1922  تقسيم إداري  البلد اليابان[2][3]  خصائص جغرافية  المساحة 677.87 كيلومت...

 

English music historian (1726–1814) For other people named Charles Burney, see Charles Burney (disambiguation). Charles Burney by Sir Joshua Reynolds in 1781 Charles Burney FRS (7 April 1726 – 12 April 1814) was an English music historian, composer and musician. He was the father of the writers Frances Burney and Sarah Burney, of the explorer James Burney, and of Charles Burney, a classicist and book donor to the British Museum. He was a close friend and supporter of Joseph Haydn and...

Bojongloa KidulKecamatanPeta lokasi Kecamatan Bojongloa KidulNegara IndonesiaProvinsiJawa BaratKotaBandungPemerintahan • Camat-Populasi • Total- jiwaKode Kemendagri32.73.17 Kode BPS3273040 Desa/kelurahan6 Sejumlah toko di Cibaduyut, di Bojongloa Kidul Bojongloa Kidul (Aksara Sunda Baku: ᮘᮧᮏᮧᮍᮣᮧᮃ ᮊᮤᮓᮥᮜ᮪) adalah sebuah kecamatan di Kota Bandung, Provinsi Jawa Barat, Indonesia. Kelurahan Cibaduyut Cibaduyut Kidul Cibaduyut Wetan Kebon Lega...

 

بلدة موندي الإحداثيات 42°54′52″N 83°45′02″W / 42.9144°N 83.7506°W / 42.9144; -83.7506   [1] تاريخ التأسيس 1833  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة جينيسي  خصائص جغرافية  المساحة 36.1 ميل مربع  ارتفاع 253 متر  عدد السكان  عدد السكان 1...