This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with eight squares around every vertex. This symmetry by orbifold notation is called (*4444) with 4 order-4 mirror intersections. In Coxeter notation can be represented as [1+,8,8,1+], (*4444 orbifold) removing two of three mirrors (passing through the square center) in the [8,8] symmetry. The *4444 symmetry can be doubled by bisecting the fundamental domain (square) by a mirror, creating *884 symmetry.
This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction (4,4,4), or {4[3]}, :
Related polyhedra and tiling
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
"Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN0-486-40919-8. LCCN99035678.