Optimal projection equations

In control theory, optimal projection equations[1][2][3] constitute necessary and sufficient conditions for a locally optimal reduced-order LQG controller.[4]

The linear-quadratic-Gaussian (LQG) control problem is one of the most fundamental optimal control problems. It concerns uncertain linear systems disturbed by additive white Gaussian noise, incomplete state information (i.e. not all the state variables are measured and available for feedback) also disturbed by additive white Gaussian noise and quadratic costs. Moreover, the solution is unique and constitutes a linear dynamic feedback control law that is easily computed and implemented. Finally the LQG controller is also fundamental to the optimal perturbation control of non-linear systems.[5]

The LQG controller itself is a dynamic system like the system it controls. Both systems have the same state dimension. Therefore, implementing the LQG controller may be problematic if the dimension of the system state is large. The reduced-order LQG problem (fixed-order LQG problem) overcomes this by fixing a-priori the number of states of the LQG controller. This problem is more difficult to solve because it is no longer separable. Also the solution is no longer unique. Despite these facts numerical algorithms are available [4][6][7][8] to solve the associated optimal projection equations.

Mathematical problem formulation and solution

Continuous-time

The reduced-order LQG control problem is almost identical to the conventional full-order LQG control problem. Let represent the state of the reduced-order LQG controller. Then the only difference is that the state dimension of the LQG controller is a-priori fixed to be smaller than , the state dimension of the controlled system.

The reduced-order LQG controller is represented by the following equations:

These equations are deliberately stated in a format that equals that of the conventional full-order LQG controller. For the reduced-order LQG control problem it is convenient to rewrite them as

where

The matrices and of the reduced-order LQG controller are determined by the so-called optimal projection equations (OPE).[3]

The square optimal projection matrix with dimension is central to the OPE. The rank of this matrix is almost everywhere equal to The associated projection is an oblique projection: The OPE constitute four matrix differential equations. The first two equations listed below are generalizations of the matrix Riccati differential equations associated to the conventional full-order LQG controller. In these equations denotes where is the identity matrix of dimension .

If the dimension of the LQG controller is not reduced, that is if , then and the two equations above become the uncoupled matrix Riccati differential equations associated to the conventional full-order LQG controller. If the two equations are coupled by the oblique projection This reveals why the reduced-order LQG problem is not separable. The oblique projection is determined from two additional matrix differential equations which involve rank conditions. Together with the previous two matrix differential equations these are the OPE. To state the additional two matrix differential equations it is convenient to introduce the following two matrices:

Then the two additional matrix differential equations that complete the OPE are as follows:

almost everywhere,
almost everywhere,

with

Here * denotes the group generalized inverse or Drazin inverse that is unique and given by

where + denotes the Moore–Penrose pseudoinverse.

The matrices must all be nonnegative symmetric. Then they constitute a solution of the OPE that determines the reduced-order LQG controller matrices and :

In the equations above the matrices are two matrices with the following properties:

almost everywhere.

They can be obtained from a projective factorization of .[4]

The OPE can be stated in many different ways that are all equivalent. To identify the equivalent representations the following identities are especially useful:

Using these identities one may for instance rewrite the first two of the optimal projection equations as follows:

This representation is both relatively simple and suitable for numerical computations.

If all the matrices in the reduced-order LQG problem formulation are time-invariant and if the horizon tends to infinity, the optimal reduced-order LQG controller becomes time-invariant and so do the OPE.[1] In that case the derivatives on the left hand side of the OPE are zero.

Discrete-time

Similar to the continuous-time case, in the discrete-time case the difference with the conventional discrete-time full-order LQG problem is the a-priori fixed reduced-order of the LQG controller state dimension. As in continuous-time, to state the discrete-time OPE it is convenient to introduce the following two matrices:

Then the discrete-time OPE is

.
.
almost everywhere,
almost everywhere.

The oblique projection matrix is given by

The nonnegative symmetric matrices that solve the discrete-time OPE determine the reduced-order LQG controller matrices and :

In the equations above the matrices are two matrices with the following properties:

almost everywhere.

They can be obtained from a projective factorization of .[4] To identify equivalent representations of the discrete-time OPE the following identities are especially useful:

As in the continuous-time case if all the matrices in the problem formulation are time-invariant and if the horizon tends to infinity the reduced-order LQG controller becomes time-invariant. Then the discrete-time OPE converge to a steady state solution that determines the time-invariant reduced-order LQG controller.[2]

The discrete-time OPE apply also to discrete-time systems with variable state, input and output dimensions (discrete-time systems with time-varying dimensions).[6] Such systems arise in the case of digital controller design if the sampling occurs asynchronously.

References

  1. ^ a b Hyland D.C; Bernstein D.S. (1984). "The optimal projection equations for fixed order dynamic compensation". IEEE Transactions on Automatic Control. AC-29 (11): 1034–1037. doi:10.1109/TAC.1984.1103418. hdl:2027.42/57875.
  2. ^ a b Bernstein D.S.; Davis L.D.; Hyland D.C. (1986). "The optimal projection equations for reduced-order discrete-time modeling estimation and control" (PDF). Journal of Guidance, Control, and Dynamics. 9 (3): 288–293. Bibcode:1986JGCD....9..288B. doi:10.2514/3.20105. hdl:2027.42/57880. Archived from the original on 2022-01-09. Retrieved 2022-01-09.
  3. ^ a b Haddad W.M.; Tadmor G. (1993). "Reduced-order LQG controllers for linear time-varying plants". Systems & Control Letters. 20 (2): 87–97. doi:10.1016/0167-6911(93)90020-7.
  4. ^ a b c d Van Willigenburg L.G.; De Koning W.L. (2000). "Numerical algorithms and issues concerning the discrete-time optimal projection equations". European Journal of Control. 6 (1): 93–100. doi:10.1016/s0947-3580(00)70917-4. Associated software download from Matlab Central Archived 2022-01-09 at the Wayback Machine.
  5. ^ Athans M. (1971). "The role and use of the stochastic linear-quadratic-Gaussian problem in control system design". IEEE Transactions on Automatic Control. AC-16 (6): 529–552. doi:10.1109/TAC.1971.1099818.
  6. ^ a b Van Willigenburg L.G.; De Koning W.L. (1999). "Optimal reduced-order compensators for time-varying discrete-time systems with deterministic and white parameters". Automatica. 35: 129–138. doi:10.1016/S0005-1098(98)00138-1. Associated software download from Matlab Central Archived 2019-10-18 at the Wayback Machine.
  7. ^ Zigic D.; Watson L.T.; Collins E.G.; Haddad W.M.; Ying S. (1996). "Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem". International Journal of Control. 56 (1): 173–191. doi:10.1080/00207179208934308.
  8. ^ Collins Jr. E.G; Haddad W.M.; Ying S. (1996). "A homotopy algorithm for reduced-order dynamic compensation using the Hyland–Bernstein optimal projection equations". Journal of Guidance, Control, and Dynamics. 19 (2): 407–417. doi:10.2514/3.21633.

Read other articles:

Jack SockKebangsaan Amerika SerikatTempat tinggalOverland Park, Amerika SerikatTinggi181 m (593 ft 10 in)Berat88 kg (194 lb)Memulai pro2009Tipe pemainTangan kananTotal hadiah$10,034,281TunggalRekor (M–K)181–154Gelar4Peringkat tertinggiNo. 8 (20 November 2017)Peringkat saat iniNo. 105 (5 November 2018)GandaRekor (M–K)210–101Gelar13Peringkat tertinggiNo. 2 (10 September 2018)Statistik terbaru dimutakhir pada 5 November 2018. Jack Sock (lahir 24 September 19...

 

Gambar Kinetoskop dengan lubang intip yang terletak di bagian atas. Kinetoskop adalah kamera gambar hidup pertama yang menampilkan gambar bergerak. Alat ini dapat memperlihatkan film secara individual melalui lubang kecil yang menyerupai jendela atau yangsekarang sering kita sebut sebagai proyektor.[1][2] Kinetoskop memperkenalkan pendekatan awal yang menjadi standar untuk seluruh proyeksi bioskop sebelum munculnya video. Asal-Usul Pada tahun 1884, George Eastman menemukan pit...

 

L'adoption du calendrier grégorien par la Grèce remonte au 16 février 1923 ; toutes les dates antérieures sont exprimées en ancien style. Guerre d’indépendance grecque Le Serment à Aghia Lavra, peinture de Theodoros P. Vryzakis, 1865. Informations générales Date 22 février 1821 - 12 septembre 1829(8 ans, 6 mois et 21 jours) Lieu Grèce, Balkans, mer Égée Issue Création du royaume de Grèce Belligérants Forces grecques : Révolutionnaires grecs Soutenu...

العلاقات البنمية المدغشقرية بنما مدغشقر   بنما   مدغشقر تعديل مصدري - تعديل   العلاقات البنمية المدغشقرية هي العلاقات الثنائية التي تجمع بين بنما ومدغشقر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بنما مدغ...

 

У этого названия есть и другие значения, см. Киевский вокзал (значения). См. также Москва-Пассажирская (значения). СтанцияМосква-Пассажирская-КиевскаяКиевское направление Московская железная дорога Вид на здание вокзала в сумеркахВокзал 1930-е годы.Брянский вокзал, 1899 год. ...

 

County in Pennsylvania, United States Not to be confused with Montgomery, Lycoming County, Pennsylvania. County in PennsylvaniaMontgomery CountyCountyMontgomery County Courthouse in Norristown, May 2007 FlagSealNickname: Montco[1]Location within the U.S. state of PennsylvaniaPennsylvania's location within the U.S.Coordinates: 40°13′N 75°22′W / 40.21°N 75.37°W / 40.21; -75.37Country United StatesState PennsylvaniaFoundedSeptember 10, 1784N...

For other sieges there, see Siege of Temesvár. Siege of TemesvárPart of the Ottoman wars in Europe and Ottoman-Habsburg warsThe siege in an Ottoman miniatureDate24 June – 27 July 1552LocationTemesvár, Kingdom of Hungary (today Timișoara, Romania)Result Ottoman victoryBelligerents Ottoman Empire Hungarian, Czech, German and Spanish defendersCommanders and leaders Ahmed Pasha Sokollu Mustafa beylerbey of Rumelia István Losonci Strength 30,000 1,900Casualties and losses Unknown Heavy...

 

Small X-ray telescope satellite Space Variable Objects MonitorSVOM artist impressionNamesSpaceborne multiband astronomical Variable Objects Monitor missionMission typeGamma-ray burst observatoryOperatorCNES / CNSAWebsitehttp://www.svom.fr/en/Mission duration3 years (planned) Spacecraft propertiesSpacecraftSVOMLaunch mass950 kg (2,090 lb)Dimensions2.5 × 2.8 m (8 ft 2 in × 9 ft 2 in)Power800 watts Start of missionLaunch date24 Ju...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMA Negeri 1 Tegal – berita · surat kabar · buku · cendekiawan · JSTOR SMA Negeri 1 TegalInformasiDidirikan1 Agustus 100mJenisNegeriAkreditasiAKepala SekolahDra. Rosa Herawati, M.PdJumlah kelas...

المسور بن مخرمة تخطيط اسم الصَّحابي المسور بن مخرمة ملحوقًا بالترضي عنه - -. معلومات شخصية اسم الولادة المسور بن مخرمة الميلاد 2 هـمكة الوفاة 1 ربيع الأول 64 هـمكة الأب مخرمة بن نوفل الأم عاتكة بنت عوف الحياة العملية النسب الزُهري القرشي المهنة مُحَدِّث  الخدمة العسكرية ال...

 

SMS Novara Imagen del SMS Novara en el informe de la expedición Novara.Banderas HistorialAstillero Arsenal de VeneciaTipo fragata de héliceOperador Armada austrohúngaraAutorizado 20 de septiembre de 1843Iniciado 4 de noviembre de 1850Botado junio de 1851Baja 22 de octubre de 1898Destino Desguazado en 1899Características generalesDesplazamiento 2615 tEslora 76,79 mManga 14,32 mCalado 5,8 mArmamento • 4 cañones Paixhans de a 60 lb de ánima lisa• 28 cañones no...

 

The mass media in Tunisia is an economic sector. Under the authoritarian regimes of Habib Bourguiba, and then Zine el-Abidine Ben Ali, it saw periods of liberalization and then challenges, notably due to Tunisian censorship. The 2010-2011 Tunisian protests and the subsequent change in government may bring significant change in this domain. In 2007, the Tunisian government's Website counted 245 daily newspapers and reviews, grown from 91 in 1987.[1] These are in large part (90%) owned ...

For the individual settlement, see Dudley.For the local authority, see Dudley Metropolitan Borough Council. Metropolitan borough in EnglandBorough of DudleyMetropolitan boroughDudley, the administrative centre of the boroughMotto(s): Unity and ProgressDudley Metropolitan Borough shown within West MidlandsSovereign stateUnited KingdomConstituent countryEnglandRegionWest MidlandsMetropolitan countyWest MidlandsHistoric countyWorcestershire and StaffordshireStatusMetropolitan boroughAdmin H...

 

VenoncomuneVenon – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Eure ArrondissementÉvreux CantoneLe Neubourg TerritorioCoordinate49°10′N 1°03′E49°10′N, 1°03′E (Venon) Superficie5,1 km² Abitanti304[1] (2009) Densità59,61 ab./km² Altre informazioniCod. postale27110 Fuso orarioUTC+1 Codice INSEE27677 CartografiaVenon Sito istituzionaleModifica dati su Wikidata · Manuale Venon è un comune francese di 304 abitanti situato ne...

 

German jurist and philosopher (1655–1728) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2018) (Learn how and when to remove this message) Christian Thomasius, portrait by Johann Christian Heinrich Sporleder Christian Thomasius (1 January 1655 – 23 September 1728) was a German jurist and philosopher. Biography ...

José Luis Sierra José Luis Sierra, como entrenador de Colo-Colo en 2016Datos personalesNombre completo José Luis Sierra PandoApodo(s) CotoNacimiento Santiago5 de diciembre de 1968 (55 años)Altura 1,81 m (5′ 11″)Pareja Grace CabreraCarrera como entrenadorDeporte FútbolDebut como entrenador 2009(Unión Española)Carrera como jugadorPosición MediocampistaDebut como jugador 1989(Unión Española)Retirada deportiva 2009(Unión Española)Part. 53 (selección) TrayectoriaEntrenad...

 

Luigi Casale (Langosco, 22 novembre 1882 – Vigevano, 18 febbraio 1927) è stato un chimico italiano. Biografia Disegno di un reattore di Casale Chimico industriale, fu allievo di Arturo Miolati. Ideò un processo di sintesi dell'ammoniaca che, assieme a quello di Giacomo Fauser, si diffuse in tutto in mondo e, dopo la prima guerra mondiale, gli fece acquistare fama internazionale. Luigi Casale era originario di Langosco Lomellina. dove era nato nel 1882, terzo degli undici figli di Santino ...

 

Hindu temple dedicated to lord Shiva in Bhimavaram, Andhra Pradesh This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Somarama – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this message) SomaramaSomeswara Swamy templeReligionAffiliationHinduismDistrictWest Godavari...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目可参照葡萄牙語維基百科和英語維基百科相應條目来扩充,其中部分條目在對應語言版為高品質條目。 (2024年3月10日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶...

 

Award ceremony for Spanish films of 1994 9th Goya AwardsDate20 January 1995SitePalacio de Congresos de MadridHosted byImanol AriasHighlightsBest FilmRunning Out of TimeBest ActorCarmelo GómezRunning Out of TimeBest ActressCristina MarcosAll Men Are the SameMost awardsRunning Out of Time (8)Most nominationsRunning Out of Time (19)Television coverageNetworkTVE ← 8th Goya Awards 10th → The 9th Goya Awards were presented in Madrid, Spain on 20 January 1995.[1][2...