Network entropy

In network science, the network entropy is a disorder measure derived from information theory to describe the level of randomness and the amount of information encoded in a graph.[1] It is a relevant metric to quantitatively characterize real complex networks and can also be used to quantify network complexity[1][2]

Formulations

According to a 2018 publication by Zenil et al. there are several formulations by which to calculate network entropy and, as a rule, they all require a particular property of the graph to be focused, such as the adjacency matrix, degree sequence, degree distribution or number of bifurcations, what might lead to values of entropy that aren't invariant to the chosen network description.[3]

Degree Distribution Shannon Entropy

The Shannon entropy can be measured for the network degree probability distribution as an average measurement of the heterogeneity of the network.

This formulation has limited use with regards to complexity, information content, causation and temporal information. Be that as it may, algorithmic complexity has the ability to characterize any general or universal property of a graph or network and it is proven that graphs with low entropy have low algorithmic complexity because the statistical regularities found in a graph are useful for computer programs to recreate it. The same cannot be said for high entropy networks though, as these might have any value for algorithmic complexity.[3]

Random Walker Shannon Entropy

Due to the limits of the previous formulation, it is possible to take a different approach while keeping the usage of the original Shannon Entropy equation.

Consider a random walker that travels around the graph, going from a node to any node adjacent to with equal probability. The probability distribution that describes the behavior of this random walker would thus be

,

where is the graph adjacency matrix and is the node degree.

From that, the Shannon entropy from each node can be defined as

and, since , the normalized node entropy is calculated

This leads to a normalized network entropy , calculated by averaging the normalized node entropy over the whole network:[4]

The normalized network entropy is maximal when the network is fully connected and decreases the sparser the network becomes . Notice that isolated nodes do not have its probability defined and, therefore, are not considered when measuring the network entropy. This formulation of network entropy has low sensitivity to hubs due to the logarithmic factor and is more meaningful for weighted networks.,[4] what ultimately makes it hard to differentiate scale-free networks using this measure alone.[2]

Random Walker Kolmogorov–Sinai Entropy

The limitations of the random walker Shannon entropy can be overcome by adapting it to use a Kolmogorov–Sinai entropy. In this context, network entropy is the entropy of a stochastic matrix associated with the graph adjacency matrix and the random walker Shannon entropy is called the dynamic entropy of the network. From that, let be the dominant eigenvalue of . It is proven that satisfies a variational principal[5] that is equivalent to the dynamic entropy for unweighted networks, i.e., the adjacency matrix consists exclusively of boolean values. Therefore, the topological entropy is defined as

This formulation is important to the study of network robustness, i.e., the capacity of the network to withstand random structural changes. Robustness is actually difficult to be measured numerically whereas the entropy can be easily calculated for any network, which is especially important in the context of non-stationary networks. The entropic fluctuation theorem shows that this entropy is positively correlated to robustness and hence a greater insensitivity of an observable to dynamic or structural perturbations of the network. Moreover, the eigenvalues are inherently related to the multiplicity of internal pathways, leading to a negative correlation between the topological entropy and the shortest average path length.[6]

Other than that, the Kolmogorov entropy is related to the Ricci curvature of the network,[7] a metric that has been used to differentiate stages of cancer from gene co-expression networks,[8] as well as to give hallmarks of financial crashes from stock correlation networks[9]

Von Neumann entropy

Von Neumann entropy is the extension of the classical Gibbs entropy in a quantum context. This entropy is constructed from a density matrix : historically, the first proposed candidate for such a density matrix has been an expression of the Laplacian matrix L associated with the network. The average von Neumann entropy of an ensemble is calculated as:[10]

For random network ensemble , the relation between and is nonmonotonic when the average connectivity is varied.

For canonical power-law network ensembles, the two entropies are linearly related.[11]

Networks with given expected degree sequences suggest that, heterogeneity in the expected degree distribution implies an equivalence between a quantum and a classical description of networks, which respectively corresponds to the von Neumann and the Shannon entropy.[12]

This definition of the Von Neumann entropy can also be extended to multilayer networks with tensorial approach[13] and has been used successfully to reduce their dimensionality from a structural point of perspective.[14]

However, it has been shown that this definition of entropy does not satisfy the property of sub-additivity (see Von Neumann entropy's subadditivity), expected to hold theoretically. A more grounded definition, satisfying this fundamental property, has been introduced by Manlio De Domenico and Biamonte[15] as a quantum-like Gibbs state

where is a normalizing factor which plays the role of the partition function, and is a tunable parameter which allows multi-resolution analysis. If is interpreted as a temporal parameter, this density matrix is formally proportional to the propagator of a diffusive process on the top of the network.

This feature has been used to build a statistical field theory of complex information dynamics, where the density matrix can be interpreted in terms of the super-position of streams operators whose action is to activate information flows among nodes.[16] The framework has been successfully applied to analyze the protein-protein interaction networks of virus-human interactomes, including the SARS-CoV-2, to unravel the systemic features of infection of the latter at microscopic, mesoscopic and macroscopic scales,[17] as well as to assess the importance of nodes for integrating information flows within the network and the role they play in network robustness.[18]

This approach has been generalized to deal with other types of dynamics, such as random walks, on the top of multilayer networks, providing an effective way to reduce the dimensionality of such systems without altering their structure.[19] Using both classical and maximum-entropy random walks, the corresponding density matrices have been used to encode the network states of the human brain and to assess, at multiple scales, connectome’s information capacity at different stages of dementia.[20]

Maximum Entropy Principle

The maximum entropy principle is a variational principal stating that the probability distribution best representing the current state of a system is the one which maximizes the Shannon entropy.[21] This concept can be used to generate an ensemble of random graphs with given structural properties derived from the maximum entropy approach which, in its turn, describes the most probable network configuration: the maximum entropy principle allows for maximally unbiased information when lacking complete knowledge (microscopic configuration is not accessible, e.g.: we don't know the adjacency matrix). On the other hand, this ensemble serves as a null model when the actual microscopic configuration of the network is known, allowing to assess the significance of empirical patterns found in the network[22]

Network Ensembles

It is possible to extend the network entropy formulations to instead measure the ensemble entropy. A set of networks that satisfies given structural characteristics can be treated as a network ensemble.[23] Brought up by Ginestra Bianconi in 2007, the entropy of a network ensemble measures the level of the order or uncertainty of a network ensemble.[24]

The entropy is the logarithm of the number of graphs.[25] Entropy can also be defined in one network. Basin entropy is the logarithm of the attractors in one Boolean network.[26]

Employing approaches from statistical mechanics, the complexity, uncertainty, and randomness of networks can be described by network ensembles with different types of constraints.[27]

Gibbs and Shannon entropy

By analogy to statistical mechanics, microcanonical ensembles and canonical ensembles of networks are introduced for the implementation. A partition function Z of an ensemble can be defined as:

where is the constraint, and () are the elements in the adjacency matrix, if and only if there is a link between node i and node j. is a step function with if , and if . The auxiliary fields and have been introduced as analogy to the bath in classical mechanics.

For simple undirected networks, the partition function can be simplified as[11]

where , is the index of the weight, and for a simple network .

Microcanonical ensembles and canonical ensembles are demonstrated with simple undirected networks.

For a microcanonical ensemble, the Gibbs entropy is defined by:

where indicates the cardinality of the ensemble, i.e., the total number of networks in the ensemble.

The probability of having a link between nodes i and j, with weight is given by:

For a canonical ensemble, the entropy is presented in the form of a Shannon entropy:

Relation between Gibbs and Shannon entropy

Network ensemble with given number of nodes and links , and its conjugate-canonical ensemble are characterized as microcanonical and canonical ensembles and they have Gibbs entropy and the Shannon entropy S, respectively. The Gibbs entropy in the ensemble is given by:[28]

For ensemble,

Inserting into the Shannon entropy:[11]

The relation indicates that the Gibbs entropy and the Shannon entropy per node S/N of random graphs are equal in the thermodynamic limit .

See also

References

  1. ^ a b Anand, Kartik; Krioukov, Dmitri; Bianconi, Ginestra (2014). "Entropy distribution and condensation in random networks with a given degree distribution". Physical Review E. 89 (6): 062807. arXiv:1403.5884. Bibcode:2014PhRvE..89f2807A. doi:10.1103/PhysRevE.89.062807. PMID 25019833. S2CID 761765.
  2. ^ a b Freitas, Cristopher GS; Aquino, Andre LL; Ramos, Heitor S; Frery, Alejandro C; Rosso, Osvaldo A (2019). "A detailed characterization of complex networks using Information Theory". Scientific Reports. 9 (1): 16689. Bibcode:2019NatSR...916689F. doi:10.1038/s41598-019-53167-5. PMC 6853913. PMID 31723172. S2CID 207987035.
  3. ^ a b Zenil, Hector; Kiani, Narsis A; Tegnér, Jesper (2018). "A review of graph and network complexity from an algorithmic information perspective". Entropy. 20 (8): 551. Bibcode:2018Entrp..20..551Z. doi:10.3390/e20080551. PMC 7513075. PMID 33265640.
  4. ^ a b Small, Michael (2013). "Complex networks from time series: Capturing dynamics". 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013). pp. 2509–2512. doi:10.1109/ISCAS.2013.6572389. ISBN 978-1-4673-5762-3. S2CID 9275909.
  5. ^ Arnold, Ludwig; Gundlach, Volker Matthias; Demetrius, Lloyd (1994). "Evolutionary formalism for products of positive random matrices". The Annals of Applied Probability. 4 (3): 859–901. doi:10.1214/aoap/1177004975. JSTOR 2245067.
  6. ^ Demetrius, Lloyd; Manke, Thomas (2005). "Robustness and network evolution—an entropic principle". Physica A: Statistical Mechanics and Its Applications. 346 (3): 682–696. Bibcode:2005PhyA..346..682D. doi:10.1016/j.physa.2004.07.011.
  7. ^ Lott, J.; Villani, C. (2009). "Ricci curvature for metric-measure spaces via optimal transport". Annals of Mathematics. 169 (3): 903–991. arXiv:math/0412127. doi:10.4007/annals.2009.169.903. S2CID 15556613.
  8. ^ Sandhu, R.; Georgiou, T.; Reznik, E.; Zhu, L.; Kolesov, I.; Senbabaoglu, Y.; Tannenbaum, A. (2015). "Graph curvature for differentiating cancer networks". Scientific Reports. 5: 12323. Bibcode:2015NatSR...512323S. doi:10.1038/srep12323. PMC 4500997. PMID 26169480.
  9. ^ Sandhu, Romeil S; Georgiou, Tryphon T; Tannenbaum, Allen R (2016). "Ricci curvature: An economic indicator for market fragility and systemic risk". Science Advances. 2 (5): e1501495. Bibcode:2016SciA....2E1495S. doi:10.1126/sciadv.1501495. PMC 4928924. PMID 27386522.
  10. ^ Du, Wenxue; Li, Xueliang; Li, Yiyang; Severini, Simone (30 December 2010). "A note on the von Neumann entropy of random graphs". Linear Algebra and Its Applications. 433 (11): 1722–1725. doi:10.1016/j.laa.2010.06.040. ISSN 0024-3795.
  11. ^ a b c Anand, Kartik; Bianconi, Ginestra (13 October 2009). "Entropy measures for networks: Toward an information theory of complex topologies". Physical Review E. 80 (4): 045102. arXiv:0907.1514. Bibcode:2009PhRvE..80d5102A. doi:10.1103/PhysRevE.80.045102. PMID 19905379. S2CID 27419558.
  12. ^ Anand, Kartik; Bianconi, Ginestra; Severini, Simone (18 March 2011). "Shannon and von Neumann entropy of random networks with heterogeneous expected degree". Physical Review E. 83 (3): 036109. arXiv:1011.1565. Bibcode:2011PhRvE..83c6109A. doi:10.1103/PhysRevE.83.036109. PMID 21517560. S2CID 1482301.
  13. ^ De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; Arenas, Alex (4 December 2013). "Mathematical Formulation of Multilayer Networks". Physical Review X. 3 (4): 041022. arXiv:1307.4977. Bibcode:2013PhRvX...3d1022D. doi:10.1103/PhysRevX.3.041022. S2CID 16611157.
  14. ^ De Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alex; Latora, Vito (23 April 2015). "Structural reducibility of multilayer networks" (PDF). Nature Communications. 6: 6864. Bibcode:2015NatCo...6.6864D. doi:10.1038/ncomms7864. PMID 25904309. S2CID 16776349.
  15. ^ De Domenico, Manlio; Biamonte, Jacob (21 December 2016). "Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison". Physical Review X. 6 (4): 041062. arXiv:1609.01214. Bibcode:2016PhRvX...6d1062D. doi:10.1103/PhysRevX.6.041062. S2CID 51786781.
  16. ^ Ghavasieh, Arsham; Nicolini, Carlo; De Domenico, Manlio (10 November 2020). "Statistical physics of complex information dynamics". Physical Review E. 102 (5): 052304. arXiv:2010.04014. Bibcode:2020PhRvE.102e2304G. doi:10.1103/PhysRevE.102.052304. PMID 33327131. S2CID 222208856.
  17. ^ Ghavasieh, Arsham; Bontorin, Sebastiano; Artime, Oriol; Verstraete, Nina; De Domenico, Manlio (23 April 2021). "Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections". Communications Physics. 4 (1): 83. arXiv:2008.09649. Bibcode:2021CmPhy...4...83G. doi:10.1038/s42005-021-00582-8.
  18. ^ Ghavasieh, Arsham; Stella, Massimo; Biamonte, Jacob; De Domenico, Manlio (10 June 2021). "Unraveling the effects of multiscale network entanglement on empirical systems". Communications Physics. 4 (1): 129. arXiv:2008.05368. Bibcode:2021CmPhy...4..129G. doi:10.1038/s42005-021-00633-0. S2CID 221104066.
  19. ^ Ghavasieh, Arsham; De Domenico, Manlio (13 February 2020). "Enhancing transport properties in interconnected systems without altering their structure". Physical Review Research. 2 (1): 13–15. arXiv:2001.04450. Bibcode:2020PhRvR...2a3155G. doi:10.1103/PhysRevResearch.2.013155. S2CID 210165034.
  20. ^ Benigni, Barbara; Ghavasieh, Arsham; Corso, Alessandra; D'Andrea, Valeria; De Domenico, Manlio (22 June 2021). "Persistence of information flow: a multiscale characterization of human brain". Network Neuroscience. 5 (3): 831–850. doi:10.1162/netn_a_00203. PMC 8567833. PMID 34746629.
  21. ^ Jaynes, E. T. (1957). "Information Theory and Statistical Mechanics" (PDF). Physical Review. Series II. 106 (4): 620–630. Bibcode:1957PhRv..106..620J. doi:10.1103/PhysRev.106.620. MR 0087305. S2CID 17870175.
  22. ^ Cimini, Giulio; Squartini, Tiziano; Saracco, Fabio; Garlaschelli, Diego; Gabrielli, Andrea; Caldarelli, Guido (2019). "The statistical physics of real-world networks". Nature Reviews Physics. 1 (1): 58–71. arXiv:1810.05095. Bibcode:2019NatRP...1...58C. doi:10.1038/s42254-018-0002-6. S2CID 52963395.
  23. ^ Levin, E.; Tishby, N.; Solla, S.A. (October 1990). "A statistical approach to learning and generalization in layered neural networks". Proceedings of the IEEE. 78 (10): 1568–1574. doi:10.1109/5.58339. ISSN 1558-2256. S2CID 5254307.
  24. ^ Bianconi, Ginestra (2008). "The entropy of randomized network ensembles". EPL (Europhysics Letters). 81 (2): 28005. arXiv:0708.0153. Bibcode:2008EL.....8128005B. doi:10.1209/0295-5075/81/28005. ISSN 0295-5075. S2CID 17269886.
  25. ^ Menichetti, Giulia; Remondini, Daniel (2014). "Entropy of a network ensemble: definitions and applications to genomic data". Theoretical Biology Forum. 107 (1–2): 77–87. ISSN 0035-6050. PMID 25936214.
  26. ^ Krawitz, Peter; Shmulevich, Ilya (27 September 2007). "Entropy of complex relevant components of Boolean networks". Physical Review E. 76 (3): 036115. arXiv:0708.1538. Bibcode:2007PhRvE..76c6115K. doi:10.1103/PhysRevE.76.036115. PMID 17930314. S2CID 6192682.
  27. ^ Bianconi, Ginestra (27 March 2009). "Entropy of network ensembles". Physical Review E. 79 (3): 036114. arXiv:0802.2888. Bibcode:2009PhRvE..79c6114B. doi:10.1103/PhysRevE.79.036114. PMID 19392025. S2CID 26082469.
  28. ^ Bogacz, Leszek; Burda, Zdzisław; Wacław, Bartłomiej (1 July 2006). "Homogeneous complex networks". Physica A: Statistical Mechanics and Its Applications. 366: 587–607. arXiv:cond-mat/0502124. Bibcode:2006PhyA..366..587B. doi:10.1016/j.physa.2005.10.024. ISSN 0378-4371. S2CID 119428248.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. PT Eratex Djaja TbkJenisPerseroan terbatasKode emitenIDX: ERTXIndustriTekstilDidirikan12 Oktober 1972; 51 tahun lalu (1972-10-12)KantorpusatJakarta, IndonesiaWilayah operasiIndonesiaTokohkunciMarissa Jeanne Maren[1](Direktur Utama)Maniwane...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapik...

 

Artikel ini perlu dikembangkan dari artikel terkait di Wikipedia bahasa Inggris. (Juli 2023) klik [tampil] untuk melihat petunjuk sebelum menerjemahkan. Lihat versi terjemahan mesin dari artikel bahasa Inggris. Terjemahan mesin Google adalah titik awal yang berguna untuk terjemahan, tapi penerjemah harus merevisi kesalahan yang diperlukan dan meyakinkan bahwa hasil terjemahan tersebut akurat, bukan hanya salin-tempel teks hasil terjemahan mesin ke dalam Wikipedia bahasa Indonesia. Jangan...

Marching Band Pupuk KaltimDidirikan7 September 1987PemilikPT. Pupuk Kalimantan TimurPenanggung JawabDirektur Utama Pupuk KaltimJumlah personel> 150 orangLokasiGedung Olah Raga PT. PUPUK KALTIM, Bontang, Kalimantan Timur, Indonesialbs Marching Band Pupuk Kaltim (sebelumnya: Marching Band Yayasan Pupuk Kaltim) merupakan grup marching band yang berasal dari kota Bontang provinsi Kalimantan Timur dibawah naungan PT. Pupuk Kalimantan Timur. Grup ini lebih akrab dikenal dengan singkata...

 

ديلانسون   الإحداثيات 42°44′55″N 74°11′07″W / 42.7486°N 74.1853°W / 42.7486; -74.1853   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة شينيكتادي  خصائص جغرافية  المساحة 1.6 كيلومتر مربع  ارتفاع 249 متر  عدد السكان  عدد السكان 335 (1 أبريل 202...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري النمساوي 1991–92 تفاصيل الموسم الدوري النمساوي  النسخة 81  البلد النمسا  المنظم اتحاد النمسا ...

Halaman ini berisi artikel tentang sebuah bank ritel. Untuk induk perusahaannya, lihat Royal Bank of Scotland Group. Artikel ini bukan mengenai Bank of Scotland. The Royal Bank of Scotland plcBanca Rìoghail na h-AlbaJenisPublik1IndustriKeuangan dan asuransiDidirikan1727KantorpusatEdinburgh, SkotlandiaTokohkunciStephen Hester, Group CEOProdukKeuangan dan asuransiBank KonsumenBank KorporasiKaryawan141.0002IndukRoyal Bank of Scotland GroupSitus webwww.rbs.co.ukCatatan kaki / referensi1 Ana...

 

Organ covering the outside of the human body This article is about skin in humans. For other vertebrates, see Skin. Human skinSkin of a human handEpidermis, dermis, and subcutis, showing a hair follicle, gland, and sebaceous glandDetailsSystemIntegumentary systemIdentifiersLatincutisTA98A16.0.00.002TA27041THH3.12.00.1.00001 FMA7163Anatomical terminology[edit on Wikidata] The human skin is the outer covering of the body and is the largest organ of the integumentary system. The skin has up ...

 

Dr.Yansen Tipa PadanM.Si. Wakil Gubernur Kalimantan Utara ke-2PetahanaMulai menjabat 15 Februari 2021PresidenJoko WidodoGubernurZainal Arifin PaliwangPendahuluUdin HianggioPenggantiPetahanaBupati Malinau ke-2Masa jabatan3 April 2011 – 15 Februari 2021PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurGubernur KaltimAwang Faroek Ishak Gubernur KaltaraIrianto Lambrie (Pj.)Triyono Budi SasongkoIrianto LambrieWakilTopan AmrullahPendahuluMarthin BillaPenggantiTopan Amrullah ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nadia district – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this message) District in West Bengal, IndiaNadiaDistrict Clockwise from top-left: Mayapur ISKCON temple, Memorial to the Bengali commanders at Palashi, ...

 

Vallis on Mars Marte VallisMarte Vallis based on THEMIS day-time imageCoordinates15°00′N 176°30′W / 15°N 176.5°W / 15; -176.5 Columnar jointing in basalt, Marte Vallis. Image courtesy High Resolution Imaging Science Experiment, University of Arizona.[1] Marte Vallis is a valley in the Amazonis quadrangle of Mars, located at 15 North and 176.5 West. It is 185 km long and was named for the Spanish word for Mars.[2] It has been identified as a...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

Pemanggang roti adalah sebuah alat yang digunakan untuk membuat roti panggang. Toaster make toast Pranala luar Wikimedia Commons memiliki media mengenai Toasters. The International Central Services Toaster Museum Rethink the Shark, an animal conservation campaign which also warns of toaster death. See also the campaign site Diarsipkan 2014-03-18 di Wayback Machine.. Pemanggang roti di HowStuffWorks lbsPeralatan rumah tanggaTipe Penyejuk udara (AC) Penggoreng udara Pengion udara Peniup Blende...

 

German rabbi and author (1798-1871) You can help expand this article with text translated from the corresponding article in Hebrew. (July 2012) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate te...

 

Legislative branch of the state government of Vermont Vermont General AssemblyTypeTypeBicameral HousesSenateHouse of RepresentativesLeadershipPresident of the Senate (Lieutenant Governor)David Zuckerman (P) since January 4, 2023 Senate president pro temporePhilip Baruth (D) since January 4, 2023 Senate Majority LeaderAlison Clarkson (D) since January 6, 2021 Senate Minority LeaderRandy Brock (R) since January 6, 2021 Senate Progressive LeaderAnthony Pollina (P/D) since Jan...

2005 studio album by Masami OkuiDragonflyStudio album by Masami OkuiReleased2 February 2005GenreJ-popLength60:19LabelevolutionProducerMasami OkuiMasami Okui chronology S-mode #2(2004) Dragonfly(2005) S-mode #3(2005) Dragonfly is the tenth album by Masami Okui, released on 2 February 2005. This album is the first album she released under her own record label company Evolution. Track listing Dragonfly Lyrics: Masami Okui Composition, arrangement: Monta Fire.com Lyrics: Masami Okui Compo...

 

Ne doit pas être confondu avec Autisme à haut niveau de fonctionnement. Vous lisez un « article de qualité » labellisé en 2015. Syndrome d'Asperger Les personnes avec le syndrome d'Asperger ont souvent des intérêts intensivement centrés et exclusifs, tels que l'intérêt de ce garçon pour les structures moléculaires. Données clés Causes Voir Causes de l'autisme Traitement Médicament Rispéridone, olanzapine, aripiprazole, fluoxétine, fluvoxamine, sertraline et méthy...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2020) تتضمن قائمة بمجموعة معرفات رقم الكتاب المعياري الدولي (يرمز له ردمك) القسم الثاني من ردمك والذي يتألف من 13 خانة رقمية والتي يتم فيها تعيين المعرف لتحديد عمل ال...

Plant of the gourd family and its edible fruit, originally native to Mesoamerica Mirleton and Merleton redirect here. For other uses, see Mirliton. Chayote Chayote fruit Chayote fruit cut lengthwise Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Cucurbitales Family: Cucurbitaceae Genus: Sicyos Species: S. edulis Binomial name Sicyos edulisJacq. Synonyms[1] Chayota edulis Jacq. Sechium edulis (Jacq.) Chayote,...

 

En geometría, un vector normal a una cantidad geométrica (línea, curva, superficie, etc) es un vector de un espacio con producto escalar que contiene tanto a la entidad geométrica como al vector normal, que tiene la propiedad de ser ortogonal a todos los vectores tangentes a la entidad geométrica. Un vector normal no necesariamente es un vector normalizado o unitario. En el caso tridimensional, una superficie normal (o simplemente una normal) a un punto P es un vector que es perpendicul...