Neijiang–Kunming railway
|
Read other articles:
Twice Sampul edisi standarKompilasi karya TwiceDirilis28 Juni 2017 (2017-06-28)Direkam2015–2017StudioJYPE StudiosGenreJ-pop, pop[1][2]Durasi34:16Bahasa Jepang Korea LabelWarner Music JapanProduserJ.Y. Park The AsiansoulKronologi Twice Signal(2017)Signal2017 #Twice(2017) What is Love?(2018)What is Love?2018 Singel dalam album Twice TT (versi Jepang)Dirilis: 28 Juni 2017 (2017-06-28) #Twice (Hashtag Twice[3]) adalah album Jepang pertama karya grup vokal ...
Hayden JamesInformasi latar belakangLahirSydney, AustraliaAsalSydney, AustraliaGenreHousePekerjaanPenyanyipenulis laguproduser rekamanTahun aktif2013–presentLabelFuture ClassicSitus webhaydenjamesmusic.com Hayden James adalah seorang DJ, penulis lagu dan produser rekaman asal Australia. Ia menandatangani kontrak dengan label rekaman Future Classic. Ia menulis dan memproduksi lagu berjudul Déjà Vu untuk Katy Perry dalam album Witness.[1] Album mini debutnya Hayden James dirilis pad...
Potensial elektrode, E, dalam kimia atau elektrokimia, menurut definisi IUPAC,[1] adalah gaya gerak listrik (GGL, electromotive force atau EMF) dari suatu sel yang dibangun dari dua elektrode:[2] di sisi kiri diagram sel adalah elektrode hidrogen standar (SHE), dan di sisi kanan adalah elektrode yang dimaksud. SHE didefinisikan memiliki potensial 0 V, sehingga potensial sel bertanda dari pengaturan di atas adalah[3] Esel = Ekiri (SHE) − Ekanan = 0 V − Eelektrode = ...
Proses sortir biji kopi di sebuah pabrik kopi di Subang. Preangerstelsel (bahasa Indonesia: Sistem Parahyangan) adalah tanam paksa kopi yang diberlakukan di wilayah Parahyangan pada tahun 1720. Rakyat diwajibkan menamam kopi dan menyetorkan hasilnya ke VOC melalui para bangsawan daerah. Hal ini sangat menguntungkan bagi Belanda dan membuat VOC menjadi produsen kopi terpenting di dunia, dengan kopi sebagai komoditas ekspor paling menguntungkan dari Jawa hingga pertengahan abad ke-19. Kebijakan...
Pour les articles homonymes, voir Monaco (homonymie). Pour l’article ayant un titre homophone, voir Monacaux. Principauté de MonacoPrincipatu de Mu̍negu Drapeau de Monaco Armoiries de Monaco Devise en latin : Deo Juvante (« Avec l'aide de Dieu ») Hymne Hymne monégasque Fête nationale 19 novembre · Événement commémoré Accession au trône du prince Rainier III (1949) Administration Forme de l'État Monarchie constitutionnelle Prince souverain Albert II Min...
It has been suggested that this article be merged into Battle of Donbas (2022). (Discuss) Proposed since March 2024. Battle in the 2022 Russian invasion of Ukraine Battle of SiverskPart of the battle of Donbas in the eastern Ukraine offensive of the 2022 Russian invasion of UkraineResidential building in Siversk and remains of a cluster rocket in August 2022Date3 July – 8 September 2022(2 months and 5 days)LocationSiversk, Donetsk Oblast, UkraineResult Ukrainian victoryBelligerent...
You can help expand this article with text translated from the corresponding article in Spanish. (June 2020) Click [show] for important translation instructions. View a machine-translated version of the Spanish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikiped...
1290-1292 succession dispute in Scotland When the crown of Scotland became vacant in September 1290 on the death of the seven-year-old Queen Margaret, 13 claimants to the throne came forward. Those with the most credible claims were John Balliol; Robert de Brus, 5th Lord of Annandale; John Hastings and Floris V, Count of Holland. Fearing civil war, the Guardians of Scotland asked Edward I of England to arbitrate. Before agreeing, he obtained concessions going some way to revive English overlo...
Masud GhnaimFaction represented in the Knesset2009–2015United Arab List2015–2019Joint List Personal detailsBorn (1965-02-14) 14 February 1965 (age 59)Sakhnin, Israel Masud Ghnaim (Arabic: مسعود غنايم, Hebrew: מסעוד גנאים; born 14 February 1965) is an Israeli Arab politician. He served as a member of the Knesset for the United Arab List between 2009 and 2019. Biography Ghnaim was born in Sakhnin.[1] He studied the history of the Middle East at the Universit...
Movement that advocates Texas to be an independent sovereign state Texit redirects here. For the proposed legislation, see Texas Independence Referendum Act. Flag of Texas Texas secession movements, also known as the Texas independence movement or Texit,[1][2] refers to both the secession of Texas during the American Civil War as well as activities of modern organizations supporting such efforts to secede from the United States and become an independent sovereign state. The U....
Viareggiocomune Viareggio – VedutaVeduta aerea di Viareggio LocalizzazioneStato Italia Regione Toscana Provincia Lucca AmministrazioneSindacoGiorgio Del Ghingaro (PD, lista civica) dal 14-6-2015 (2º mandato dal 22-9-2020) TerritorioCoordinate43°52′02.06″N 10°15′02.18″E / 43.867239°N 10.250606°E43.867239; 10.250606 (Viareggio)Coordinate: 43°52′02.06″N 10°15′02.18″E / 43.867239°N 10.250606°E43.867239;...
Province of Bulgaria 41°39′N 25°22′E / 41.650°N 25.367°E / 41.650; 25.367 Province in BulgariaKardzhali Province Област КърджалиProvinceVarbitsa River Valley FlagLocation of Kardzhali Province in BulgariaCountryBulgariaCapitalKardzhaliMunicipalities7Government • GovernorNikola ChanevArea • Total3,209 km2 (1,239 sq mi)Population (December 2022)[1] • Total142,508 • Density44...
1983 film by Jandhyala Moodu MulluPosterDirected byJandhyalaScreenplay byJandhyalaBased onMundhanai Mudichuby K. BhagyarajProduced byP. Sasibhusan[1]StarringChandramohanRadhikaCinematographyS. Gopal ReddyEdited byGautam RajuMusic byRajan–NagendraProductioncompaniesAVM ProductionsSri Saradhi StudiosRelease date 9 September 1983 (1983-09-09) CountryIndiaLanguageTelugu Moodu Mullu (transl. Three knots) is a 1983 Indian Telugu-language romantic comedy film written a...
Pour la station de métro, voir Wanstead (métro de Londres). Cet article est une ébauche concernant Londres. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Wanstead Administration Pays Royaume-Uni Nation constitutiveRégionComtéComté cérémonial AngleterreGrand LondresGrand LondresGrand Londres Comté traditionnel Essex Borough Redbridge Assemblée de Londres Leyton and Wanstead Parlement européen Londres...
Huruf vau dalam posisi lepas. ۋ dibaca vau atau kadang ve adalah salah satu huruf Arab yang merupakan varian dari huruf wau yang digunakan untuk melambangkan fonem /v/ dalam bahasa-bahasa non-Arab yang menggunakan huruf Arab, seperti bahasa Turki Utsmani, Kazakhstan dan beberapa bahasa di Asia Tengah [butuh rujukan]. Dalam bahasa Arab standar huruf vau tidak digunakan karena dalam bahasa Arab tidak diperlukan fonem /v/. Huruf ve bukanlah termasuk dalam ke-28 huruf Arab standar atau h...
Українська гімназія № 1 Тип гімназіяКраїна Україна 48°56′41″ пн. ш. 24°41′17″ сх. д. / 48.944588° пн. ш. 24.688167° сх. д. / 48.944588; 24.688167Девіз Scientia vinces (Знаннями переможемо)Засновано 1905 (відновлено 1992)Закрито 1944Директор Дейчаківський Ігор ІвановичУч...
Nazi Holocaust perpetrator (1891–1948) Otto RaschRasch's mugshot after his indictment for the Nuremberg Military Tribunal (July 1947)Born7 December 1891Friedrichsruh, German EmpireDied1 November 1948(1948-11-01) (aged 56)Wehrstedt, Lower Saxony, Allied-occupied GermanyKnown forBabi Yar massacreCriminal statusDeceasedMotiveNazismCriminal chargeCrimes against humanityWar crimesMembership in a criminal organizationTrialEinsatzgruppen trialDetailsVictims80,000+Span of crimes1939�...
Study of mathematical knots Examples of different knots including the trivial knot (top left) and the trefoil knot (below it) A knot diagram of the trefoil knot, the simplest non-trivial knot In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or unknot). In mathematical language, a kno...
See also: Index of Croatia-related articles Overview of and topical guide to Croatia The Flag of CroatiaThe Coat of arms of Croatia The location of Croatia with its major cities labelled. Flag-map of Croatia The following outline is provided as an overview of and topical guide to Croatia: Croatia – unitary democratic parliamentary republic in Europe at the crossroads of Central Europe, the Balkans, and the Mediterranean. The country's population is 4 million, most of whom are Croats, wi...
American lawyer and politician (1945–2021) Sarah WeddingtonWeddington in 1978White House Director of Political AffairsIn officeAugust 10, 1979 – January 20, 1981PresidentJimmy CarterPreceded byTimothy KraftSucceeded byLyn NofzigerMember of the Texas House of Representativesfrom the 37-B districtIn officeJanuary 11, 1977 – September 1, 1977Preceded byConstituency establishedSucceeded byMary Jane BodeMember of the Texas House of Representativesfro...