Mycroft and Sherlock

Mycroft and Sherlock
First edition
AuthorKareem Abdul-Jabbar
Anna Waterhouse
LanguageEnglish
GenreMystery novels
PublisherTitan Books
Publication date
2018
Media typePrint (hardback)
ISBN978-1785659256 (first U.S. edition, hardback)
Preceded byMycroft Holmes 
Followed byMycroft and Sherlock: The Empty Birdcage 

Mycroft and Sherlock is a mystery novel by Kareem Abdul-Jabbar and Anna Waterhouse. It is the second novel in their "Mycroft Holmes" series utilizing Sir Arthur Conan Doyle's characters of Mycroft and Sherlock Holmes.[1] Having focused solely on Mycroft in the first novel, Abdul-Jabbar and Waterhouse were curious about the relationship between Mycroft and his brother and recognized that the sequel would need the introduction of Sherlock.[2]

In an interview with Lyndsay Faye, Abdul-Jabbar described the writing process noting that he is a "history aficionado" while Waterhouse is more interested in research.[3] Abdul-Jabbar also stated that plot was more of interest to him while Waterhouse was more drawn to dialogue.[3]

Plot

Mycroft Holmes and Cyrus Douglas, of whom the latter now runs a school for boys, are joined by Mycroft's younger brother Sherlock to investigate a series of killings dubbed "the Savage Gardens murders."

Reception

Kirkus Reviews was positive about the novel while conceding "The mystery, as so often in Conan Doyle, is less interesting than the Holmes-ian byplay."[4] Michael Dirda of The Washington Post praised the book saying the story moves "briskly" and calling it "diverting, light entertainment" while noting "Enjoyable as the book is, a purist will nonetheless fault its loose construction."[5] Both BookPage[6] and New York Journal of Books[7] gave positive notices of the book.

References

  1. ^ McMillan, Graeme (April 9, 2018). "Kareem Abdul-Jabbar Details Sherlock Holmes' First Case in 'Mycroft and Sherlock' (Exclusive)". The Hollywood Reporter. Retrieved December 12, 2019.
  2. ^ Vitcavage, Adam (November 14, 2018). "How Kareem Abdul-Jabbar Is Reinventing the Sherlock Holmes Story". Electric Literature. Retrieved December 12, 2019.
  3. ^ a b Faye, Lyndsay (October 17, 2018). "Kareem Abdul-Jabbar and the Evolving Sherlock Canon". CrimeReads. Retrieved December 12, 2019.
  4. ^ "Mycroft and Sherlock". Kirkus Reviews. August 21, 2018. Retrieved December 12, 2019.
  5. ^ Dirda, Michael (October 3, 2018). "Kareem Abdul-Jabbar returns to his other passion: Sherlock Holmes". The Washington Post. Retrieved December 12, 2019.
  6. ^ Frazier, G. Robert (October 9, 2018). "Mycroft and Sherlock". BookPage. Retrieved December 12, 2019.
  7. ^ Reveal, Judith. "Mycroft and Sherlock". New York Journal of Books. Retrieved December 12, 2019.

Read other articles:

Gosho Aoyama Manga Factory青山剛昌ふるさと館Location within Tottori PrefectureNama lamaPusat Studi Sejarah dan Budaya Daiei[1]Didirikan18 Maret 2007 (2007-03-18)LokasiHokuei, TottoriKoordinat35°29′52.9″N 133°45′42.6″E / 35.498028°N 133.761833°E / 35.498028; 133.761833Koordinat: 35°29′52.9″N 133°45′42.6″E / 35.498028°N 133.761833°E / 35.498028; 133.761833JenisMuseum anime dan mangaKoleksiGosho Aoyama,...

 

العلاقات البوتسوانية المالطية بوتسوانا مالطا   بوتسوانا   مالطا تعديل مصدري - تعديل   العلاقات البوتسوانية المالطية هي العلاقات الثنائية التي تجمع بين بوتسوانا ومالطا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

 

Town in Estonia Town in Ida-Viru County, EstoniaPüssiTownLüganuse school buildingPüssiLocation in EstoniaCoordinates: 59°22′N 27°03′E / 59.367°N 27.050°E / 59.367; 27.050CountryEstoniaCountyIda-Viru CountyMunicipalityLüganuse ParishFirst mentioned1472Borough rights1954Town rights1993Population (2018)[1] • Total917Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Püssi is a town in Lüganuse Parish, Ida-Viru County, in nor...

Mathematical function of two variables; outputs 1 if they are equal, 0 otherwise Not to be confused with the Dirac delta function, nor with the Kronecker symbol. In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: δ i j = { 0 if  i ≠ j , 1 if  i = j . {\displaystyle \delta _{ij}={\begin{cases}0&{\text{if }}i\neq j,\\1&am...

 

American actor (1919–1996) Martin BalsamBalsam in the 1960sBornMartin Henry Balsam(1919-11-04)November 4, 1919New York City, U.S.DiedFebruary 13, 1996(1996-02-13) (aged 76)Rome, ItalyResting placeCedar Park Cemetery, New Jersey, U.S.Alma materThe New SchoolOccupationActorYears active1947–1995Notable workSee listSpouses Pearl Somner ​ ​(m. 1951; div. 1954)​ Joyce Van Patten ​ ​(m. 1957; div....

 

2001 2017 Élections sénatoriales de 2011 dans le Morbihan 25 septembre 2011 Type d’élection Élections sénatoriales Postes à élire 3 sièges de sénateur Odette Herviaux – PS Voix 948 54,73 %  Michel Le Scouarnec – PCF Voix 823 47,52 %  Voix au 2e tour 891 51,71 %  Joël Labbé – EELV Voix 830 47,92 %  Voix au 2e tour 879 51,02 %  Jacques Le Nay – UMP Voix 815 47,06 %  Voix au 2e ...

1941 battle of the Second Sino-Japanese War You can help expand this article with text translated from the corresponding article in Japanese. (October 2021) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting...

 

Hypercomplex number system OctonionsSymbol O {\displaystyle \mathbb {O} } TypeHypercomplex algebraUnitse0, ..., e7Multiplicative identitye0Main propertiesNon-commutativeNon-associativeCommon systems N {\displaystyle \mathbb {N} }  Natural numbers Z {\displaystyle \mathbb {Z} }  Integers Q {\displaystyle \mathbb {Q} }  Rational numbers R {\displaystyle \mathbb {R} }  Real numbers C {\displaystyle \mathbb {C} }  Complex numbers H {\displaystyle \mathbb {H} }  Quate...

 

ماتيوز غامروتالميلاد11 ديسمبر 1990 (العمر 33 سنة)بييلسكو-بياوا، بولنداأسماء أخرىجيمر (بالإنجليزية: Gamer)‏الطول5 قدم 10 بوصة (1.78 م)الوزن155 رطل (70 كـغ؛ 11 ستون 1 رطل)الفئة الوزن الخفيف (2012–الآن) وزن الريشة (2018) طول الذراع71 بوصة (180 سـم)[1]الأسلوبمصارعةالوقفة ...

Colombian footballer (born 1989) In this Spanish name, the first or paternal surname is Espinosa and the second or maternal family name is Zúñiga. Bernardo Espinosa Bernardo in action for Sporting Gijón in 2014Personal informationFull name Bernardo José Espinosa Zúñiga[1]Date of birth (1989-07-11) 11 July 1989 (age 34)[2]Place of birth Cali, ColombiaHeight 1.92 m (6 ft 4 in)[2]Position(s) Centre-backTeam informationCurrent team Atléti...

 

David Nelson (died 20 July 1789) was gardener-botanist on the third voyage of James Cook, and botanist on HMS Bounty under William Bligh at the time of the famous mutiny. Nothing is known of his ancestry or early life. In 1776, while working as a gardener at Kew Gardens, he accepted a position as a servant to William Bayly, the official astronomer on HMS Resolution. He was promoted to able seaman; however, his real task as arranged between Joseph Banks and Cook was to collect as ma...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Cet article est une ébauche concernant l’architecture ou l’urbanisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Cité. Väike-Õismäe, quartier de Tallinn en Estonie. Un grand ensemble, parfois qualifié de cité ou abusivement cité HLM (car beaucoup de grands ensembles, même parmi les plus délabrés, sont des copropriétés et non des logements sociaux), est un t...

 

  提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...

 

Neuri dalam peta pertengahan abad ke-19 «Dunia Herodotos» Neuri atau Navari merupakan suku yang dideskripsikan oleh Herodotos pada abad ke-5 SM. Sarjana kontemporer menyamakan kelompok ini dengan Yotvingia, kelompok Baltik Barat, dan meyakini mereka hidup di dekat sungai Narew di wilayah Polandia atau Belarus masa kini. Pranala luar Marija Gimbutas, The Balts, p. 97-102  Chisholm, Hugh, ed. (1911). Neuri. Encyclopædia Britannica (edisi ke-11). Cambridge University Press.  Templat...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: That's Why You Go Away – news · newspapers · books · scholar · JSTOR (May 2017) (Learn how and when to remove this message) 1995 single by Michael Learns to RockThat's Why (You Go Away)Single by Michael Learns to Rockfrom the album Played on Pepper B-sideT...

 

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...

 

Genus of flowering plants Leavenworthia Leavenworthia stylosa Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Brassicales Family: Brassicaceae Genus: LeavenworthiaTorr. Species about 8, see text Wikimedia Commons has media related to Leavenworthia. Leavenworthia is a genus of flowering plants in the family Brassicaceae. It includes about eight species native to the southern and southeastern United States.[1] They ...

Avancée soviétique du 1er septembre 1943 au 31 décembre 1944 : la poche de Courlande se situe en Lettonie. La poche de Courlande désigne l'encerclement par l'Armée rouge des forces de l'Axe dans la péninsule de Courlande, à l'ouest de la Lettonie, durant la dernière année de la Seconde Guerre mondiale. Préambule Le 22 juin 1944, trois ans après le début de l'opération Barbarossa, l'Armée rouge lance l'opération Bagration destinée à libérer entièrement de toute occupati...

 

British baroness (1796–1837) The Right HonourableThe Lady De L'Isle and DudleyLady De L'Isle and Dudley in 1832, by Andrew MortonBornSophia FitzClarence25 August 1796Somerset Street, London, EnglandDied10 April 1837 (aged 40)Kensington Palace, London, EnglandNoble familyFitzClarenceSpouse(s) Philip Sidney, 1st Baron De L'Isle and Dudley ​ ​(m. 1825)​IssueAdelaide SidneyErnestine SidneySophia SidneyPhilip Sidney, 2nd Baron De L'Isle and DudleyFatherWilliam ...