Multiple-scale analysis

In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables. This is done by introducing fast-scale and slow-scale variables for an independent variable, and subsequently treating these variables, fast and slow, as if they are independent. In the solution process of the perturbation problem thereafter, the resulting additional freedom – introduced by the new independent variables – is used to remove (unwanted) secular terms. The latter puts constraints on the approximate solution, which are called solvability conditions.

Mathematics research from about the 1980s proposes[citation needed] that coordinate transforms and invariant manifolds provide a sounder support for multiscale modelling (for example, see center manifold and slow manifold).

Example: undamped Duffing equation

Here the differences between approaches for both regular perturbation theory and multiple-scale analysis can be seen, and how they compare to the exact solution for

Differential equation and energy conservation

As an example for the method of multiple-scale analysis, consider the undamped and unforced Duffing equation:[1] which is a second-order ordinary differential equation describing a nonlinear oscillator. A solution y(t) is sought for small values of the (positive) nonlinearity parameter 0 < ε ≪ 1. The undamped Duffing equation is known to be a Hamiltonian system: with q = y(t) and p = dy/dt. Consequently, the Hamiltonian H(pq) is a conserved quantity, a constant, equal to H = 1/2 + 1/4 ε for the given initial conditions. This implies that both y and dy/dt have to be bounded:

Straightforward perturbation-series solution

A regular perturbation-series approach to the problem proceeds by writing and substituting this into the undamped Duffing equation. Matching powers of gives the system of equations

Solving these subject to the initial conditions yields

Note that the last term between the square braces is secular: it grows without bound for large |t|. In particular, for this term is O(1) and has the same order of magnitude as the leading-order term. Because the terms have become disordered, the series is no longer an asymptotic expansion of the solution.

Method of multiple scales

To construct a solution that is valid beyond , the method of multiple-scale analysis is used. Introduce the slow scale t1: and assume the solution y(t) is a perturbation-series solution dependent both on t and t1, treated as:

So: using dt1/dt = ε. Similarly:

Then the zeroth- and first-order problems of the multiple-scales perturbation series for the Duffing equation become:

Solution

The zeroth-order problem has the general solution: with A(t1) a complex-valued amplitude to the zeroth-order solution Y0(tt1) and i2 = −1. Now, in the first-order problem the forcing in the right hand side of the differential equation is where c.c. denotes the complex conjugate of the preceding terms. The occurrence of secular terms can be prevented by imposing on the – yet unknown – amplitude A(t1) the solvability condition

The solution to the solvability condition, also satisfying the initial conditions y(0) = 1 and dy/dt(0) = 0, is:

As a result, the approximate solution by the multiple-scales analysis is using t1 = εt and valid for εt = O(1). This agrees with the nonlinear frequency changes found by employing the Lindstedt–Poincaré method.

This new solution is valid until . Higher-order solutions – using the method of multiple scales – require the introduction of additional slow scales, i.e., t2 = ε2 t, t3 = ε3 t, etc. However, this introduces possible ambiguities in the perturbation series solution, which require a careful treatment (see Kevorkian & Cole 1996; Bender & Orszag 1999).[2]

Coordinate transform to amplitude/phase variables

Alternatively, modern approaches derive these sorts of models using coordinate transforms, like in the method of normal forms,[3] as described next.

A solution is sought in new coordinates where the amplitude varies slowly and the phase varies at an almost constant rate, namely Straightforward algebra finds the coordinate transform[citation needed] transforms Duffing's equation into the pair that the radius is constant and the phase evolves according to

That is, Duffing's oscillations are of constant amplitude but have different frequencies depending upon the amplitude.[4]

More difficult examples are better treated using a time-dependent coordinate transform involving complex exponentials (as also invoked in the previous multiple time-scale approach). A web service will perform the analysis for a wide range of examples.[when?][5]

See also

Notes

  1. ^ This example is treated in: Bender & Orszag (1999) pp. 545–551.
  2. ^ Bender & Orszag (1999) p. 551.
  3. ^ Lamarque, C.-H.; Touze, C.; Thomas, O. (2012), "An upper bound for validity limits of asymptotic analytical approaches based on normal form theory" (PDF), Nonlinear Dynamics, 70 (3): 1931–1949, Bibcode:2012NonDy..70.1931L, doi:10.1007/s11071-012-0584-y, hdl:10985/7473, S2CID 254862552
  4. ^ Roberts, A.J., Modelling emergent dynamics in complex systems, retrieved 2013-10-03
  5. ^ Roberts, A.J., Construct centre manifolds of ordinary or delay differential equations (autonomous), retrieved 2013-10-03

References

Read other articles:

Untuk penjualan mobil di antara 2002 hingga 2013 yaitu Isuzu MU-7, dan penerus adalah Isuzu MU-X, lihat Isuzu D-Max. Isuzu/Chevrolet RodeoIsuzu MUIsuzu WizardIsuzu AmigoHonda PassportOpel FronteraVauxhall FronteraHolden FronteraInformasiProdusenIsuzuMasa produksi1989–2004Bodi & rangkaKelasMid-size SUVBentuk kerangka3/5-Pintu wagonTata letakmesin depan, penggerak roda belakang / mesin depan, penggerak 4 rodaKronologiPenerusIsuzu Ascender (Amerika Utara)Isuzu MU-7 (ASEAN)Untuk Opel/V...

 

Indonesian Choice Awards 2018Tanggal29 April 2018 (2018-04-29)LokasiSentul International Convention Center, BogorNegara IndonesiaDipersembahkan olehSarah SechanVincentDestaIkhtisarPenghargaan terbanyakSheila on 7 (2)Nominasi terbanyakIsyana SarasvatiRendy Pandugo (3)Album of the YearKereta Kencan – HIVI!Male Singer of the YearRendy PandugoFemale Singer of the YearRaisaActor of the YearAdipati DolkenActress of the YearChelsea IslanSitus webzulu.id/ica5/Siaran televisi/radioSaluranN...

 

غثيان وقيء بعد العملية الجراحية معلومات عامة من أنواع غثيان،  ومضاعفات بعد العمليات  [لغات أخرى]‏  الإدارة أدوية ميتوكلوبراميد  تعديل مصدري - تعديل   الغثيان والقيء بعد العملية الجراحية هي المضاعفات التي تؤثر على حوالي 10% من الأشخاص الذين يخضعون للتخدير ا...

Legislative election in Arizona Not to be confused with 2016 United States Senate election in Arizona. 2016 Arizona Senate election ← 2014 November 8, 2016 2018 → All 30 seats of the Arizona Senate16 seats needed for a majority   Majority party Minority party   Leader Steve Yarbrough Katie Hobbs Party Republican Democratic Leader's seat 17th 24th Last election 17 13 Seats before 18[a] 12[a] Seats after 17 13 Seat change ...

 

Australian actress (1932–2001) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: June Salter – news · newspapers · books · scholar · JSTOR (January 2008) (Learn how and when to remove this template message) June SalterBornJune Marie Salter(1932-06-22)22 June 1932Bexley, New South Wales, AustraliaDied15 Septe...

 

1983 studio album by the Stranglers This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Feline The Stranglers album – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this message) FelineStudio album by The StranglersReleased14 January 1983RecordedSeptember 1982[1...

Lingue germanicheParlato inOriginariamente nella zona compresa tra il Reno, le Alpi, l'Elba ed il Mare del Nord; oggigiorno diffuse in tutto il mondo LocutoriClassifica2 Altre informazioniScritturaalfabeto latino, alfabeto ebraico TassonomiaFilogenesiLingue indoeuropee Lingue germaniche Codici di classificazioneISO 639-2gem ISO 639-5gem Linguist Listgerm (EN) Glottologgerm1287 (EN)      Paesi nei quali la lingua più parlata è una lingua germanica   &#...

 

Interaction between schizophrenia and smoking Schizophrenia and tobacco smoking have been historically associated.[1][2] [3] Smoking is known to harm the health of people with schizophrenia.[1] Studies across 20 countries showed that people with schizophrenia were much more likely to smoke than those without this diagnosis.[2] For example, in the United States, 90% or more of people with schizophrenia smoked, compared to 20% of the general population in...

 

Seat of Stockholm city government You can help expand this article with text translated from the corresponding article in Swedish. (August 2019) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate t...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Untuk Riksdag Finlandia, lihat Parlemen Finlandia. Riksdag Swedia Sveriges riksdagTiga MahkotaJenisJenisUnikameral PimpinanKetuaAndreas Norlén, (M) sejak 24 September 2018 Wakil Ketua PertamaÅsa Lindestam, (S) sejak 24 September 2018 Wakil Ketua KeduaLotta Johnsson Fornarve, (V) sejak 24 September 2018 Wakil Ketua KetigaKerstin Lundgren, (C) sejak 24 September 2018 KomposisiAnggota349Partai & kursiPemerintah (116)   Sosial Demokrat (100)   Partai Hijau (16) Key...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

Partai Nanggroe Aceh Peurte Nanggroe Aceh Nanggroe Aceh PartyKetua umumIrwandi YusufSekretaris JenderalMiswar FuadyDibentuk24 April 2012 (sebagai Partai Nasional Aceh)2 Mei 2017 (sebagai Partai Nanggroe Aceh)Kantor pusatJalan Prof. Ali Hasyimi, Pango Raya, Ulee Kareng, Banda AcehIdeologiRegionalisme AcehKursi di DPR6 / 81 Situs webwww.pna.or.idPolitik IndonesiaPartai politikPemilihan umum Partai Nanggroe Aceh (disingkat PNA) adalah salah satu partai politik lokal di provinsi Aceh, Indonesia. ...

 

Competition between two or more parties to have superior armed forces For similar terms, see Nuclear arms race and Evolutionary arms race. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Arms race – news · newspapers · books · scholar · JSTOR (June 2007) (Learn how and when to remove this message) Top arms ...

 

Pour les articles homonymes, voir PMI. Maison de la Protection maternelle et infantile à Marcoussis en Essonne. La Protection maternelle et infantile, ou PMI, est un système de protection de la mère et de l'enfant, créé en France par une ordonnance du 2 novembre 1945[1] voulue par le ministre de la Santé François Billoux. Cette création fut très largement inspirée par l'Association Alsacienne et Lorraine de puériculture, créée en 1920 par le pédiatre alsacien Paul Rohmer (1876-...

First-level administrative division Administrative countyCategoryCountyLocationEngland and Wales and IrelandCreated byLocal Government Act 1888Local Government (Ireland) Act 1898CreatedEngland and Wales 1889Ireland 1899Abolished byLocal Government (Boundaries) Act (Northern Ireland) 1971Local Government Act 1972Local Government Act 2001AbolishedNorthern Ireland 1973England and Wales 1974Republic of Ireland 2002GovernmentCounty councilSubdivisionsRural districtUrban districtMunicipal...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس بلغاريا 2010–11 تفاصيل الموسم كأس بلغاريا  النسخة 29  البلد بلغاريا  المنظم اتحاد بلغاريا لكرة ا�...

 

Canadian politician Marquis Duquesne redirects here. For the French naval officer Marquis du Bouchet, see Abraham Duquesne. Michel-Ange Duquesne de MennevilleBorn(1700-04-04)4 April 1700Toulon, FranceDied17 September 1778(1778-09-17) (aged 78)Antony, Hauts-de-Seine, FranceOccupationGovernor of New France Michel-Ange Duquesne de Menneville, Marquis Duquesne (c. 1700 – 17 September 1778) was a French Governor General of New France. He was born in Toulon, France. Duquesne se...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Ascoli Calcio 1898. Associazione Sportiva Del Duca AscoliStagione 1964-1965Sport calcio Squadra Del Duca Ascoli Allenatore Alfredo Notti Presidente Leone Clicchi Serie C4º posto nel girone C. Maggiori presenzeCampionato: Beccaccioli (34) Miglior marcatoreCampion...

 

Eliteserien 1995 Competizione Eliteserien Sport Calcio Edizione 50ª Organizzatore NFF Date dal 21 aprile 1995al 22 ottobre 1995 Luogo  Norvegia Partecipanti 14 Formula Girone all'italiana Risultati Vincitore Rosenborg(10º titolo) Secondo Molde Retrocessioni HøddHamKamStrindheim Statistiche Miglior marcatore Harald Martin Brattbakk (26) Incontri disputati 182 Gol segnati 679 (3,73 per incontro) Cronologia della competizione 1994 1996 Manuale La Eliteserien 1995, nota...