In the mathematics of evolving systems, the concept of a center manifold was originally developed to determine stability of degenerate equilibria. Subsequently, the concept of center manifolds was realised to be fundamental to mathematical modelling.
Center manifolds play an important role in bifurcation theory because interesting behavior takes place on the center manifold and in multiscale mathematics because the long time dynamics of the micro-scale often are attracted to a relatively simple center manifold involving the coarse scale variables.
Informal description
Saturn's rings capture much center-manifold geometry. Dust particles in the rings are subject to tidal forces, which act characteristically to "compress and stretch". The forces compress particle orbits into the rings, stretch particles along the rings, and ignore small shifts in ring radius. The compressing direction defines the stable manifold, the stretching direction defining the unstable manifold, and the neutral direction is the center manifold.
While geometrically accurate, one major difference distinguishes Saturn's rings from a physical center manifold. Like most dynamical systems, particles in the rings are governed by second-order laws. Understanding trajectories requires modeling position and a velocity/momentum variable, to give a tangent manifold structure called phase space. Physically speaking, the stable, unstable and neutral manifolds of Saturn's ring system do not divide up the coordinate space for a particle's position; they analogously divide up phase space instead.
The center manifold typically behaves as an extended collection of saddle points. Some position-velocity pairs are driven towards the center manifold, while others are flung away from it. Small perturbations that generally push them about randomly, and often push them out of the center manifold. There are, however, dramatic counterexamples to instability at the center manifold, called Lagrangian coherent structures. The entire unforced rigid body dynamics of a ball is a center manifold.[1]
A much more sophisticated example is the Anosov flow on tangent bundles of Riemann surfaces. In that case, the tangent space splits very explicitly and precisely into three parts: the unstable and stable bundles, with the neutral manifold wedged between.
Mathematically, the first step when studying equilibrium points of dynamical systems is to linearize the system, and then compute its eigenvalues and eigenvectors. The eigenvectors (and generalized eigenvectors if they occur) corresponding to eigenvalues with negative real part form a basis for the stable eigenspace. The (generalized) eigenvectors corresponding to eigenvalues with positive real part form the unstable eigenspace.
the stable subspace, spanned by generalized eigenvectors whose eigenvalues satisfy (more generally, );
the unstable subspace, spanned by the generalized eigenvectors whose eigenvalues satisfy (more generally, ).
Depending upon the application, other invariant subspaces of the linearized equation may be of interest, including center-stable, center-unstable, sub-center, slow, and fast subspaces.
If the equilibrium point is hyperbolic (that is, all eigenvalues of the linearization have nonzero real part), then the Hartman-Grobman theorem guarantees that these eigenvalues and eigenvectors completely characterise the system's dynamics near the equilibrium. However, if the equilibrium has eigenvalues whose real part is zero, then the corresponding (generalized) eigenvectors form the center eigenspace. Going beyond the linearization, when we account for perturbations by nonlinearity or forcing in the dynamical system, the center eigenspace deforms to the nearby center manifold.[3]
If the eigenvalues are precisely zero (as they are for the ball), rather than just real-part being zero, then the corresponding eigenspace more specifically gives rise to a slow manifold. The behavior on the center (slow) manifold is generally not determined by the linearization and thus may be difficult to construct.
Analogously, nonlinearity or forcing in the system perturbs the stable and unstable eigenspaces to a nearby stable manifold and nearby unstable manifold.[4]
These three types of manifolds are three cases of an invariant manifold.
Corresponding to the linearized system, the nonlinear system has invariant manifolds, each consisting of sets of orbits of the nonlinear system.[5]
An invariant manifold tangent to the stable subspace and with the same dimension is the stable manifold.
The unstable manifold is of the same dimension and tangent to the unstable subspace.
A center manifold is of the same dimension and tangent to the center subspace. If, as is common, the eigenvalues of the center subspace are all precisely zero, rather than just real part zero, then a center manifold is often called a slow manifold.
Center manifold theorems
The center manifold existence theorem states that if the right-hand side function is ( times continuously differentiable), then at every equilibrium point there exists a neighborhood of some finite size in which there is at least one of[6]
In example applications, a nonlinear coordinate transform to a normal form can clearly separate these three manifolds.[7]
In the case when the unstable manifold does not exist, center manifolds are often relevant to modelling. The center manifold emergence theorem then says that the neighborhood may be chosen so that all solutions of the system staying in the neighborhood tend exponentially quickly to some solution on the center manifold; in formulas, for some rate β.[8] This theorem asserts that for a wide variety of initial conditions the solutions of the full system decay exponentially quickly to a solution on the relatively low dimensional center manifold.
A third theorem, the approximation theorem, asserts that if an approximate expression for such invariant manifolds, say , satisfies the differential equation for the system to residuals as , then the invariant manifold is approximated by to an error of the same order, namely .
Center manifolds of infinite-dimensional or non-autonomous systems
However, some applications, such as to dispersion in tubes or channels, require an infinite-dimensional center manifold.
[9]
The most general and powerful theory was developed by Aulbach and Wanner.
[10][11][12] They addressed non-autonomous dynamical systems in infinite dimensions, with potentially infinite dimensional stable, unstable and center manifolds. Further, they usefully generalised the definition of the manifolds so that the center manifold is associated with eigenvalues such that , the stable manifold with eigenvalues , and unstable manifold with eigenvalues . They proved existence of these manifolds, and the emergence of a center manifold, via nonlinear coordinate transforms.
Potzsche and Rasmussen established a corresponding approximation theorem for such infinite dimensional, non-autonomous systems.
[13]
Alternative backwards theory
All the extant theory mentioned above seeks to establish invariant manifold properties of a specific given problem. In particular, one constructs a manifold that approximates an invariant manifold of the given system. An alternative approach is to construct exact invariant manifolds for a system that approximates the given system---called a backwards theory. The aim is to usefully apply theory to a wider range of systems, and to estimate errors and sizes of domain of validity.
[14][15]
This approach is cognate to the well-established backward error analysis in numerical modeling.
Center manifold and the analysis of nonlinear systems
As the stability of the equilibrium correlates with the "stability" of its manifolds, the existence of a center manifold brings up the question about the dynamics on the center manifold. This is analyzed by the center manifold reduction, which, in combination with some system parameter μ, leads to the concepts of bifurcations.
Examples
The Wikipedia entry on slow manifolds gives more examples.
A simple example
Consider the system
The unstable manifold at the origin is the y axis, and the stable manifold is the trivial set {(0, 0)}. Any orbit not on the stable manifold satisfies an equation of the form for some real constant A. It follows that for any real A, we can create a center manifold by piecing together the curve for x > 0 with the negative x axis (including the origin).[16] Moreover, all center manifolds have this potential non-uniqueness, although often the non-uniqueness only occurs in unphysical complex values of the variables.
Delay differential equations often have Hopf bifurcations
Another example shows how a center manifold models the Hopf bifurcation that occurs for parameter in the delay differential equation. Strictly, the delay makes this DE infinite-dimensional.
Fortunately, we may approximate such delays by the following trick that keeps the dimensionality finite.
Define and approximate the time-delayed variable, , by using the intermediaries
and
.
In terms of a complex amplitude and its complex conjugate , the center manifold is
and the evolution on the center manifold is
This evolution shows the origin is linearly unstable for , but the cubic nonlinearity then stabilises nearby limit cycles as in classic Hopf bifurcation.
^Roberts, A.J. (1993). "The invariant manifold of beam deformations. Part 1: the simple circular rod". J. Elast. 30: 1–54. doi:10.1007/BF00041769. S2CID123743932.
^Aulbach, B.; Wanner, T. (2000). "The Hartman–Grobman theorem for Caratheodory-type differential equations in Banach spaces". Nonlinear Analysis. 40 (1–8): 91–104. doi:10.1016/S0362-546X(00)85006-3.
^Aulbach, B.; Wanner, T. (1996). "Integral manifolds for Caratheodory type differential equations in Banach spaces". In Aulbach, B.; Colonius, F. (eds.). Six Lectures on Dynamical Systems. Singapore: World Scientific. pp. 45–119. ISBN9789810225483.
^Aulbach, B.; Wanner, T. (1999). "Invariant foliations for Caratheodory type differential equations in Banach spaces". In Lakshmikantham, V.; Martynyuk, A. A. (eds.). Advances of Stability Theory at the End of XX Century. Gordon & Breach.
^Aulbach, B.; Wanner, T. (2000). "The Hartman–Grobman theorem for Caratheodory-type differential equations in Banach spaces". Nonlinear Analysis. 40 (1–8): 91–104. doi:10.1016/S0362-546X(00)85006-3.
Chicone, Carmen (2010). Ordinary differential equations with applications. Texts in applied mathematics (2nd ed.). New York, NY: Springer. ISBN978-0-387-35794-2.
Guckenheimer, John; Holmes, Philip (1997), Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Berlin, New York: Springer-Verlag, ISBN978-0-387-90819-9, corrected fifth printing.
External links
Online web services to extract center manifolds from a specified system via computer algebra:
Edward Henry PalmerBiografiKelahiran(en) Edward Henry Palmer 7 Agustus 1840 Cambridge Kematian10 Agustus 1882 (42 tahun)Semenanjung Sinai Tempat pemakamanKatedral Santo Paulus Data pribadiPendidikanSt John's College, Cambridge KegiatanPekerjaanPenerjemah, penulis, orientalis dan pendidik Bekerja diUniversitas Cambridge KeluargaPasangan nikahLaura Davis (en) (1871–1878)Auguste Margarethe Elisabeth (en) (1879–1882) Edward Henry Palmer (lahir pada tahun 1840 di Cambridge, Inggris - m...
Location of Vernon County in Wisconsin This is a list of the National Register of Historic Places listings in Vernon County, Wisconsin, USA. It is intended to provide a comprehensive listing of entries in the National Register of Historic Places that are located in Vernon County, Wisconsin. The locations of National Register properties for which the latitude and longitude coordinates are included below may be seen in a map.[1] There are 24 properties and districts listed on the Natio...
المعهد الأمريكي للفنون التخطيطيةالشعارالتاريخالتأسيس 1914 الإطارالاختصار AIGA (بالإنجليزية) النوع كلية تنظيميةجمعية مهنية البلد الولايات المتحدة التنظيمموقع الويب aiga.org (الإنجليزية) تعديل - تعديل مصدري - تعديل ويكي بيانات المعهد الأمريكي لفنون الجرافيك American Institute of Graphic Ar...
Not to be confused with Aventinus (mythology). For other uses, see Aventinus (disambiguation). Aventinus Silvius from Nuremberg chronicles Aventinus (said to have reigned 854-817 BC),[1] one of the mythical kings of Alba Longa, who was buried on the Aventine Hill later named after him. He is said to have reigned thirty-seven years, and to have been succeeded by Procas, the father of Amulius. Servius, in analysing Virgil's Aeneid, Book vii. 656, speaks of an Aventinus, a king of the ab...
ApiceKomuneComune di ApiceLokasi Apice di Provinsi BeneventoNegaraItaliaWilayah CampaniaProvinsiBenevento (BN)Luas[1] • Total49,04 km2 (18,93 sq mi)Ketinggian[2]225 m (738 ft)Populasi (2016)[3] • Total6.245 • Kepadatan130/km2 (330/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos82021Kode area telepon0824Situs webhttp://www.comune.apice.bn.it Apice adalah sebuah kota da...
Music from the video game Final Fantasy XII Music of Final Fantasy Final Fantasy I and II Final Fantasy III Final Fantasy IV Final Fantasy V Final Fantasy VI Final Fantasy VII series Final Fantasy VIII Final Fantasy IX Final Fantasy X Final Fantasy X-2 Final Fantasy XI Final Fantasy XII Final Fantasy XIII Final Fantasy XIII-2 Lightning Returns: Final Fantasy XIII Final Fantasy XIV Final Fantasy XV Final Fantasy XVI Tactics series Chocobo series Crystal Chronicles series Compilation albums Con...
Belgian artistic gymnast Some of this article's listed sources may not be reliable. Please help improve this article by looking for better, more reliable sources. Unreliable citations may be challenged and removed. (November 2020) (Learn how and when to remove this message) Aagje VanwalleghemAagje Vanwalleghem in 2004Personal informationFull nameAagje Vanwalleghem(formerly Ana Maria Pereira da Silva)Country representedBelgiumBorn (1987-10-24) 24 October 1987 (age 36)Poção de Pedra...
Cet article possède un paronyme, voir Avèze. Avezé L'église Saint-Pierre. Administration Pays France Région Pays de la Loire Département Sarthe Arrondissement Mamers Intercommunalité Communauté de communes du Pays de l'Huisne Sarthoise Maire Mandat Pierre Boulard 2020-2026 Code postal 72400 Code commune 72020 Démographie Gentilé Avezéen Populationmunicipale 691 hab. (2021 ) Densité 33 hab./km2 Géographie Coordonnées 48° 13′ 38″ nord, 0° 40′...
Purble PlacevideogiocoScreenshot di Purble PlacePiattaformaMicrosoft Windows Data di pubblicazione 30 gennaio 2007 GenereRompicapo OrigineStati Uniti SviluppoOberon Games PubblicazioneMicrosoft Modalità di giocoGiocatore singolo Periferiche di inputMouse Purble Place è un gioco per computer sviluppato da Oberon Games incluso in Windows Vista e Windows 7. È un gioco educativo per bambini, che insegna a riconoscere colori e forme. Indice 1 Contenuti 1.1 Comfy Cakes 1.2 Purble Pairs 1.3 Purbl...
Chesapeake Bay FlotillaCharles Ball wearing the uniform of the Chesapeake Bay Flotilla.Active1813-1815Country United StatesAllegiance United StatesBranch U.S. NavyRoleartillerySize4,370 men (with an additional 700 U.S. marines attached to naval force)Part ofU.S. Department of the NavyEngagementsWar of 1812 Battle of St. Jerome Creek (1814) Battle of St. Leonard's Creek (1814) Battle of Queen Anne (1814) Battle of Bladensburg (1814) Battle of Baltimore (1814) CommandersNotableco...
1990 studio album by IcehouseCode BlueStudio album by IcehouseReleased11 November 1990Recorded1989–1990StudioTrackdown and Rhinoceros, Sydney, AustraliaGenre Rock new wave Length51:38LabelRegularProducerNick LaunayIcehouse chronology Great Southern Land(1989) Code Blue(1990) Masterfile(1992) Singles from Code Blue Touch the FireReleased: 30 September 1989 Big FunReleased: 23 July 1990 Miss DivineReleased: 28 August 1990 Anything Is PossibleReleased: 9 December 1990 Where the River ...
Three Sixty West Tower B, occupied by the Ritz-Carlton, is one of the tallest commercial buildings in Mumbai. The Bandra–Worli Sea Link. The skyline of South Mumbai, across Back Bay. The Bombay Stock Exchange. Mumbai, often described as the New York of India,[1] is the financial centre and the most populous city of India with an estimated city proper population of 12.5 million (1.25 crore).[2] The city is the entertainment, fashion, and commercial centre of India....
For other places with the same name, see Çatalca (disambiguation). Tchataldja and Chataldja redirect here. For the town in Greece, see Choristi. District and municipality in Istanbul, TurkeyÇatalcaDistrict and municipalityMap showing Çatalca District in Istanbul ProvinceÇatalcaLocation in TurkeyShow map of TurkeyÇatalcaÇatalca (Istanbul)Show map of IstanbulCoordinates: 41°08′30″N 28°27′47″E / 41.14167°N 28.46306°E / 41.14167; 28.46306CountryTurkeyProv...
Attacks using radioactive material with intent of contamination of an area United States Navy Seabees donning NBC suits during a CBRN defense drill in 2008 Weapons of mass destruction By type Biological Chemical Nuclear Radiological By country Albania Algeria Argentina Australia Brazil Bulgaria Canada China Egypt France Germany India Iran Iraq Israel Italy Japan Libya Mexico Myanmar Netherlands North Korea Pakistan Philippines Poland Rhodesia Romania Russia (Soviet Union) Saudi Arabia South A...
Cet article est une ébauche concernant une localité allemande. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Mülbach Armoiries Administration Pays Allemagne Land Rhénanie-Palatinat Arrondissement(Landkreis) Eifel-Bitburg-Prüm Bourgmestre(Ortsbürgermeister) Rudolf Schüller Code postal 54636 Code communal(Gemeindeschlüssel) 07 2 32 083 Indicatif téléphonique 06527 Immatriculation BIT Démographie Popul...