Minimax theorem

In the mathematical area of game theory and of convex optimization, a minimax theorem is a theorem that claims that

under certain conditions on the sets and and on the function .[1] It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928,[2] which is considered the starting point of game theory. Von Neumann is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved".[3] Since then, several generalizations and alternative versions of von Neumann's original theorem have appeared in the literature.[4][5]

Bilinear functions and zero-sum games

Von Neumann's original theorem[2] was motivated by game theory and applies to the case where

  • and are standard simplexes: and , and
  • is a linear function in both of its arguments (that is, is bilinear) and therefore can be written for a finite matrix , or equivalently as .

Under these assumptions, von Neumann proved that

In the context of two-player zero-sum games, the sets and correspond to the strategy sets of the first and second player, respectively, which consist of lotteries over their actions (so-called mixed strategies), and their payoffs are defined by the payoff matrix . The function encodes the expected value of the payoff to the first player when the first player plays the strategy and the second player plays the strategy .

Concave-convex functions

The function f(x, y) = x2y2 is concave-convex.

Von Neumann's minimax theorem can be generalized to domains that are compact and convex, and to functions that are concave in their first argument and convex in their second argument (known as concave-convex functions). Formally, let and be compact convex sets. If is a continuous function that is concave-convex, i.e.

is concave for every fixed , and
is convex for every fixed .

Then we have that

Sion's minimax theorem

Sion's minimax theorem is a generalization of von Neumann's minimax theorem due to Maurice Sion,[6] relaxing the requirement that It states:[6][7]

Let be a convex subset of a linear topological space and let be a compact convex subset of a linear topological space. If is a real-valued function on with

upper semicontinuous and quasi-concave on , for every fixed , and
lower semicontinuous and quasi-convex on , for every fixed .

Then we have that

See also

References

  1. ^ Simons, Stephen (1995), Du, Ding-Zhu; Pardalos, Panos M. (eds.), "Minimax Theorems and Their Proofs", Minimax and Applications, Boston, MA: Springer US, pp. 1–23, doi:10.1007/978-1-4613-3557-3_1, ISBN 978-1-4613-3557-3, retrieved 2024-10-27
  2. ^ a b Von Neumann, J. (1928). "Zur Theorie der Gesellschaftsspiele". Math. Ann. 100: 295–320. doi:10.1007/BF01448847. S2CID 122961988.
  3. ^ John L Casti (1996). Five golden rules: great theories of 20th-century mathematics – and why they matter. New York: Wiley-Interscience. p. 19. ISBN 978-0-471-00261-1.
  4. ^ Du, Ding-Zhu; Pardalos, Panos M., eds. (1995). Minimax and Applications. Boston, MA: Springer US. ISBN 9781461335573.
  5. ^ Brandt, Felix; Brill, Markus; Suksompong, Warut (2016). "An ordinal minimax theorem". Games and Economic Behavior. 95: 107–112. arXiv:1412.4198. doi:10.1016/j.geb.2015.12.010. S2CID 360407.
  6. ^ a b Sion, Maurice (1958). "On general minimax theorems". Pacific Journal of Mathematics. 8 (1): 171–176. doi:10.2140/pjm.1958.8.171. MR 0097026. Zbl 0081.11502.
  7. ^ Komiya, Hidetoshi (1988). "Elementary proof for Sion's minimax theorem". Kodai Mathematical Journal. 11 (1): 5–7. doi:10.2996/kmj/1138038812. MR 0930413. Zbl 0646.49004.


Read other articles:

Edisi IIAlbum studio karya AlexaDirilis1 Agustus 2010GenrePop RockLabelWarner Music IndonesiaKronologi Alexa Alexa (2008) Alexa: Special Edition (2009)Alexa2008 Edisi II (2010) Dulu, Kemarin, Sekarang (2015) Singel dalam album Edisi II Andai Dulu, Kemarin, Sekarang2015 Edisi II adalah album kedua dari grup musik Indonesia, Alexa yang dirilis pada tahun 2010. Berisikan 13 buah lagu dengan lagu Andai sebagai hits singel album ini. Daftar lagu Selagi Ku Mampu Andai Separuh Jiwaku Selalu Kuke...

 

 

2 Samuel 6Kitab Samuel (Kitab 1 & 2 Samuel) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 1 SamuelKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen10← pasal 5 pasal 7 → 2 Samuel 6 (atau II Samuel 6, disingkat 2Sam 6) adalah bagian dari Kitab 2 Samuel dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk Nabi-nabi Awal atau Nevi'im Rishonim [נביאים ראשונים] dalam bagian Nevi'im (נביא...

 

 

Pour les articles homonymes, voir Meade. James MeadeBiographieNaissance 23 juin 1907Swanage (Angleterre)Décès 22 décembre 1995 (à 88 ans)Cambridge (Angleterre)Nationalité britanniqueFormation Oriel CollegeTrinity CollegeMalvern College (en)Christ's CollegeLambrook (en)Activités Économiste, professeur d'universitéEnfant Thomas Wilson Meade (en)Autres informationsA travaillé pour London School of EconomicsParti politique Parti social-démocrateMembre de Académie américaine des ...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Uniform for wear on formal occasions This article is about the most formal military uniform. For military uniforms in general, see military uniform. Officers of the Russian Aerospace Forces at the 2019 Moscow Victory Day Parade in full dress Part of a series onWestern dress codesand corresponding attires Formal (full dress)   White tie  Morning dress  Full dress uniform Frock coat  Evening gown  Ball gown  Semi-formal (half dress)   Black tie  Black lou...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

Mountain pass in Riverside County, California, United States For other places with similar names, see San Gorgonio. San Gorgonio PassBanning PassA small segment of the San Gorgonio Pass wind farmElevation2,600 ft (792 m) NGVD 29[1]Traversed by I-10LocationRiverside County, California, United StatesRangeSan Bernardino Mountains/ San Jacinto MountainsCoordinates33°55′12.1″N 116°58′14.1″W / 33.920028°N 116.970583°W / 33.920028; -116.970583 ...

 

 

Ini adalah nama Melayu; nama Mohamad merupakan patronimik, bukan nama keluarga, dan tokoh ini dipanggil menggunakan nama depannya, Mahathir. Yang Amat Berbahagia Tun Dr.Mahathir MohamadSMN DK I (Johor) DK (Kedah) DKNS DK (Perlis) DUK SUMW DUPN SPDK SBS SPMJ DP SSDK SPNS SSAP SPCM SSMT PIS NPk (Pakistan) KGE (Thailand)محاضير محمدMahathir Mohamad pada tahun 2018 Perdana Menteri Malaysia ke-4 dan ke-7Masa jabatan10 Mei 2018 – 24 Februari 2020Penjabat Perdana Menteri samp...

National Historical Park of the United States United States historic placeAdams National Historical ParkU.S. National Register of Historic PlacesFormer U.S. National Historic SiteU.S. National Historical Park John Adams birthplaceShow map of MassachusettsShow map of the United StatesLocation135 Adams St., Quincy, MassachusettsCoordinates42°15′23″N 71°0′41″W / 42.25639°N 71.01139°W / 42.25639; -71.01139Area8.5 acres (3.4 ha) (NRHP listing) 13.82 acr...

 

 

Baseball field in Philadelphia, Pennsylvania Erny FieldLocation8122 Michener AvenuePhiladelphia, Pennsylvania, USACoordinates40°04′36.7″N 75°10′10.2″W / 40.076861°N 75.169500°W / 40.076861; -75.169500Field sizeLeft Field: 0 feet (0 m)Center Field: 400 feet (122 m)Right Field: 0 feet (0 m)SurfaceNatural grassTenantsTemple University (NCAA D-I) 1927–2013Arcadia University (NCAA D-III) 2004–2017 Errny Field is a baseball field at Mou...

 

 

American playwright and director David AuburnBorn (1969-11-30) November 30, 1969 (age 54)Chicago, Illinois, U.S.OccupationPlaywright, screenwriter, theatre directorEducationUniversity of Chicago (BA)Juilliard School (GrDip)Children2 David Auburn (born 30 November 1969)[1] is an American playwright, screenwriter and theatre director. He is best known for his 2000 play Proof, which won the 2001 Tony Award for Best Play and Pulitzer Prize for Drama. He also wrote the screenplays for...

Provinces of the Ottoman Empire Six Vilayets ولايت سته Վեց Հայկական Վիլայեթները Vilayets of Ottoman EmpireThe six Armenian provinces in early 20th century.Today part ofTurkey The Six Vilayets (Ottoman Turkish: ولايت سته, Vilâyat-ı Sitte), the Six Provinces, or the Six Armenian Vilayets (Armenian: Վեց Հայկական Վիլայեթները Vets' haykakan vilayet'nery; Turkish: Altı vilayet, Altı il[1]) were the main Armenian-populated vilay...

 

 

Vista absidale del duomo di Milano. Per gotico a Milano si intende l'esperienza artistica cittadina a cavallo tra la seconda metà del XIII secolo e la prima metà del XV secolo. Lo stile gotico, inizialmente introdotto nel territorio milanese dai monaci cistercensi, fu il principale linguaggio artistico del vasto programma mecenatesco e autocelebrativo dei Visconti, signori di Milano, al cui dominio sulla città viene solitamente associato il periodo gotico milanese. Indice 1 Inquadramento s...

 

 

العلاقات البوليفية اللاتفية بوليفيا لاتفيا   بوليفيا   لاتفيا تعديل مصدري - تعديل   العلاقات البوليفية اللاتفية هي العلاقات الثنائية التي تجمع بين بوليفيا ولاتفيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن...

العلاقات الهندية الإيطالية الهند إيطاليا   الهند   إيطاليا تعديل مصدري - تعديل   العلاقات الهندية الإيطالية هي العلاقات الثنائية التي تجمع بين الهند وإيطاليا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة اله�...

 

 

Disambiguazione – Delphi rimanda qui. Se stai cercando altri significati, vedi Delphi (disambigua). Questa voce o sezione sull'argomento linguaggi di programmazione non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Embarcadero Delphilinguaggio di programmazioneLogoAutoreEmbarcadero Technologies Data di origine1995 Ultima versioneRAD Studio 12.1 A...

 

 

Saskatchewan Legislature29th Saskatchewan LegislatureTypeTypeUnicameral HousesLegislative AssemblySovereignThe lieutenant governor (representing the King of Canada)HistoryFounded1905 (1905)Preceded byNorthwest Territories LegislatureMeeting placeLegislative Building, Regina, Saskatchewan, Canada The Saskatchewan Legislature is made of two elements: the lieutenant governor[1] as representative of the King of Canada, and the unicameral assembly called the Legislative Assembly....

Performing arts theatre and company in Moscow Not to be confused with Moscow Art Theatre. Stanislavski and Nemirovich-Danchenko TheatreМосковский академический Музыкальный театр имени народных артистов К. С. Станиславского и Вл. И. Немировича-ДанченкоAddress17 Bolshaya Dmitrovka StreetMoscowRussiaCoordinates55°45′53″N 37°36′38″E / 55.76472°N 37.61056°E / 55.764...

 

 

Cet article est une ébauche concernant le Maine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Comté d'Androscoggin(Androscoggin County) Église Holy Cross, Lewiston Administration Pays États-Unis État Maine Chef-lieu Auburn Fondation 1854 Démographie Population 107 702 hab. (2010) Densité 88 hab./km2 Géographie Coordonnées 44° 17′ 51″ nord, 70° 05′ 14″...