Tool measuring EM radiation at 0.3–300-GHz frequency
A microwave radiometer (MWR) is a radiometer that measures energy emitted at one millimeter-to-metre wavelengths (frequencies of 0.3–300 GHz) known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermally-emitted electromagnetic radiation. They are usually equipped with multiple receiving channels to derive the characteristic emission spectrum of planetary atmospheres, surfaces or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including remote sensing, weather forecasting, climate monitoring, radio astronomy and radio propagation studies.
Using the microwave spectral range between 1 and 300 GHz provides complementary information to the visible and infrared spectral range. Most importantly, the atmosphere and also vegetation is semi-transparent in the microwave spectral range. This means components like dry gases, water vapor, or hydrometeors interact with microwave radiation but overall even the cloudy atmosphere is not completely opaque in this frequency range.[1]
For weather and climate monitoring, microwave radiometers are operated from space as well as from the ground.[1][2] As remote sensing instruments, they are designed to operate continuously and autonomously often in combination with other atmospheric remote sensors like for example cloud radars and lidars. They allow the derivation of important meteorological quantities such as vertical temperature and humidity profiles, columnar water vapor quantity, and columnar liquid water path with a high temporal resolution on the order of minutes to seconds under nearly all weather conditions.[3] Microwave radiometers are also used for remote sensing of Earth's ocean and land surfaces, to derive ocean temperature and wind speed, ice characteristics, and soil and vegetation properties.[1][2]
History
First developments of microwave radiometer were dedicated to the measurement of radiation of extraterrestrial origin in the 1930s and 1940s. The most common form of microwave radiometer was introduced by Robert Dicke in 1946 in the Radiation Laboratory of Massachusetts Institute of Technology to better determine the temperature of the microwave background radiation. This first radiometer worked at a wavelength 1.25 cm and was operated at the Massachusetts Institute of Technology. Dicke also first discovered weak atmospheric microwave absorption using three different radiometers (at wavelengths of 1.0, 1.25 and 1.5 cm).[4]
Soon after satellites were first used for observing the atmosphere, microwave radiometers became part of their instrumentation. In 1962 the Mariner-2 mission was launched by NASA in to investigate the surface of Venus including a radiometer for water vapor and temperature observations. In following years a wide variety of microwave radiometers were tested on satellites. The launch of the Scanning Multichannel Microwave Radiometer in 1978 became an important milestone in the history of radiometry. It was the first time a conically scanning radiometer was used in space; it was launched into space on board the NASA Nimbus satellite.[5] The launch of this mission gave the opportunity to image the Earth at a constant angle of incidence that is important as surface emissivity is angle dependent. In the beginning of 1980, new multi-frequency, dual-polarization radiometric instruments were developed. Two spacecraft were launched which carried instruments of this type: Nimbus-7 and Seasat. The Nimbus-7 mission results allowed to globally monitor the state of ocean surface as well as surface covered by snow and glaciers. Today, microwave instruments like the Advanced Microwave Sounding Unit (AMSU) and the Special Sensor Microwave Imager / Sounder (SSMIS) are widely used on different satellites.
Ground-based radiometers for the determination of temperature profiles were first explored in the 1960s and have since improved in terms of reduced noise and the ability to run unattended 24/7 within worldwide observational networks.[6] Review articles,[7][8] and a detailed online handbook[9] are available.
Principle of operation
Solids, liquids (e.g. the Earth's surface, ocean, sea ice, snow, vegetation) but also gases emit and absorb microwave radiation. Traditionally, the amount of radiation a microwave radiometer receives is expressed as the equivalent blackbody temperature also called brightness temperature. In the microwave range several atmospheric gases exhibit rotational lines. They provide specific absorption features shown at a figure on the right which allow to derive information about their abundance and vertical structure. Examples for such absorption features are the oxygen absorption complex (caused by magnetic dipole transitions) around 60 GHz which is used to derive temperature profiles or the water vapor absorption line around 22.235 GHz (dipole rotational transition) which is used to observe the vertical profile of humidity. Other significant absorption lines are found at 118.75 GHz (oxygen absorption) and at 183.31 GHz (water vapor absorption, used for water vapor profiling under dry conditions or from satellites). Weak absorption features due to ozone are also used for stratospheric ozone density and temperature profiling.
Besides the distinct absorption features of molecular transition lines, there are also non-resonant contributions by hydrometeors (liquid drops and frozen particles). Liquid water emission increases with frequency, hence, measuring at two frequencies, typically one close to the water absorption line (22.235 GHz) and one in the nearby window region (typically 31 GHz) dominated by liquid absorption provides information on both the columnar amount of water vapor and the columnar amount of liquid water separately (two-channel radiometer). The so-called „water vapor continuum" arises from the contribution of far away water vapor lines.
Larger rain drops as well as larger frozen hydrometeors (snow, graupel, hail) also scatter microwave radiation especially at higher frequencies (>90 GHz). These scattering effects can be used to distinguish between rain and cloud water content exploiting polarized measurements[10] but also to constrain the columnar amount of snow and ice particles from space[11] and from the ground.[12]
Design
A microwave radiometer consists of an antenna system, microwave radio-frequency components (front-end) and a back-end for signal processing at intermediate frequencies.
The key element is the Dicke switch, which alternately switches between the antenna and a cryogenic load at a known temperature. A calculation from the change in noise level, gives the sky temperature.
The atmospheric signal is very weak and the signal needs to be amplified by around 80 dB. Therefore, heterodyne techniques are often used to convert the signal down to lower frequencies that allow the use of commercial amplifiers and signal processing. Increasingly low noise amplifiers are becoming available at higher frequencies, i.e. up to 100 GHz, making heterodyne techniques obsolete. Thermal stabilization is highly important to avoid receiver drifts.
Usually ground-based radiometers are also equipped with environmental sensors (rain, temperature, humidity) and GPS receivers (time and location reference). The antenna itself often measures through a window made of foam which is transparent in the microwave spectrum to keep the antenna clean of dust, liquid water and ice. Often, also a heated blower system is attached the radiometer which helps to keep the window free of liquid drops or dew (strong emitters in the MW) but also free of ice and snow.
As seen from the figure above, after the radiofrequency signal is received at the antenna it is downconverted to the intermediate frequency with the help of a stable local oscillator signal. After amplification with a Low Noise Amplifier and band pass filtering the signal can be detected in full power mode, by splitting or splitting it into multiple frequency bands with a spectrometer. For high-frequency calibrations a Dicke switch is used here.
Calibration
The calibration of microwave radiometer sets the basis for accurate measured brightness temperatures and therefore, for accurate retrieved atmospheric parameters as temperature profiles, integrated water vapor and liquid water path. The simplest version of a calibration is a so-called "hot-cold" calibration using two reference blackbodies at known, but different, "hot" and "cold" temperatures, i.e. assuming a linear relation between input power and output voltage of the detector. Knowing the physical temperatures of the references, their brightness temperatures can be calculated and directly related to detected voltages of the radiometer, hence, the linear relationship between brightness temperatures and voltages can be obtained.
The temperatures of the calibration targets should be chosen such that they span the full measurement range. Ground-based radiometers usually use an ambient temperature target as "hot" reference. As a cold target one can use either a liquid nitrogen cooled blackbody (77 K) or a zenith clear sky TB that was obtained indirectly from radiative transfer theory.[8] Satellites use a heated target as "hot" reference and the cosmic background radiation as "cold" reference. To increase the accuracy and stability of MWR calibrations further calibration targets, such as internal noise sources, or Dicke switches can be used.
Retrieval of temperature and water vapor profiles
The retrieval of physical quantities using microwave radiometry (e.g. temperature or water vapor profiles) is not straightforward and comprehensive retrieval algorithms (using inversion techniques like optimal estimation approach) have been developed.
Temperature profiles are obtained by measuring along the oxygen absorption complex at 60 GHz. The emission at any altitude is proportional to the temperature and density of oxygen. As oxygen is homogeneously distributed within the atmosphere and around the globe, the brightness temperature signals can be used to derive the temperature profile. Signals at the center of the absorption complex are dominated by the atmosphere closest to the radiometer (when ground-based). Moving into the window region, the signal is a superposition from close and far regions of the atmosphere. The combination of several channels contains therefore information about the vertical temperature distribution. A similar approach is used to derive vertical profiles of water vapor utilizing its absorption line at 22.235 GHz and also around the 183.31 GHz absorption line.
Satellite instrumentation
Microwave instruments are flown on several polar orbiting satellites for Earth observation and operational meteorology as well as part of extraterrestrial missions.
One distinguishes between imaging instruments that
are used with conical scanning for remote sensing of the Earth surface, e.g. AMSR, SSMI, WINDSAT,
and sounding instruments that are operated in cross-track mode, e.g. ATMS/MHS. The first type uses lower frequencies (1–100 GHz) in atmospheric windows to observe sea-surface salinity, soil moisture, sea-surface temperature, wind speed over ocean, precipitation and snow. Other than optical earth observation sensors, passive microwave can be used do determine the snow water equivalent (liquit water content of snow) by comparing various frequencies. [13][14]
The second type is used to measure along absorption lines to retrieve temperature and humidity profile.
Furthermore, limb sounders, e.g., MLS, are used to retrieve trace gas profiles in the upper atmosphere.
By the 2010s four microwave radiometers have been flown on interplanetary spacecraft.[15] The first was Mariner 2, which used a microwave instrument to determine the high surface temperature of Venus was coming from the surface not higher up in the atmosphere.[16][15] There are/were also radiometers on the Juno Jupiter probe, the Rosetta comet probe, and Cassini-Huygens.[15][17]
The Juno probe, launched in 2011, is characterizing the atmosphere of Jupiter using a microwave radiometer suite.[8] The Microwave Radiometer (MWR) instrument on Juno has several antennas observing in several different microwave wavelengths to penetrate the top cloud layer of the planet, and detect features, temperatures, and chemical abundances there.[17]
Ground-based networks
MWRnet is a network established in 2009 of scientists working with ground-based microwave radiometers. MWRnet aims to facilitate the exchange of information in the MWR user community fostering the participation to coordinated international projects. In the long run, MWRnet’s mission aims at setting up operational software, quality control procedures, data formats, etc. similar to other successful networks such as EARLINET, AERONET, CWINDE.
References
^ abcMicrowave Remote Sensing—Active and Passive". By F. T. Ulaby. R. K. Moore and A. K. Fung. (Reading, Massachusetts: Addison-Wesley, 1981 and 1982.) Volume I: Microwave Remote Sensing Fundamentals and Radiometry.
^ abThermal Microwave Radiation: Applications for Remote Sensing, C. Matzler, 2006, The Institution of Engineering and Technology, London, Chapter 1.
^Westwater, Edgeworth Rupert, 1970: Ground-Based Determination of Temperature Profiles by Microwaves. PH.D. Thesis, UNIVERSITY OF COLORADO AT BOULDER, Source: Dissertation Abstracts International, Volume: 32-02, Section: B, page: 1134.
^Passive Microwave Remote Sensing of the Earth, Physical Foundations, Eugene A. Sharkov, Springer-Praxis Books in Geophysical Sciences, Chapter 14: Passive microwave space missions
^Westwater, E.R., C. Mätzler, S. Crewell (2004) A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere. Radio Science Bulletin, No. 3010, September 2004, 59–80
^ abcWestwater, E. R., S. Crewell, C. Mätzler, and D. Cimini, 2006: Principles of Surface-based Microwave and Millimeter wave Radiometric Remote Sensing of the Troposphere, Quaderni Della Societa Italiana di Elettromagnetismo, 1(3), September 2005, 50–90.
^Czekala et al. (2001), Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry, Geophy. Res. Lett., DOI: 10.1029/2000GL012247
^Bennartz, R., and P. Bauer (2003), Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles, Radio Sci., 38(4), 8075, doi:10.1029/2002RS002626.
^Kneifel et al. (2010), Snow scattering signals in ground-based passive microwave radiometer measurements, J. Geophys. Res., DOI: 10.1029/2010JD013856
У этого термина существуют и другие значения, см. Серп и молот (значения). Медаль «Серп и Молот» Страна СССР Тип медаль Кому вручается Вручалась гражданам СССР Статус не вручается Статистика Дата учреждения 22 мая 1940 года Первое награждение 22 мая 1940 года Последнее н
System of plant taxonomy See also: Angiosperm Phylogeny Group The APG II system (Angiosperm Phylogeny Group II system) of plant classification is the second, now obsolete, version of a modern, mostly molecular-based, system of plant taxonomy that was published in April 2003 by the Angiosperm Phylogeny Group.[1] It was a revision of the first APG system, published in 1998, and was superseded in 2009 by a further revision, the APG III system. History APG II was published as: Angiosperm ...
Questa voce o sezione sull'argomento università non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Conservatorio di Musica Cesare Pollini di Padova UbicazioneStato Italia CittàPadova Dati generaliFondazione1878 TipoStatale Dir. generaleElio Orio Mappa di localizzazione Sito web Modifica dati su Wi...
Sporting event delegationGibraltar at the2015 World Championships in AthleticsWA codeGIBWebsitewww.pzla.plin BeijingCompetitors1Medals Gold 0 Silver 0 Bronze 0 Total 0 World Championships in Athletics appearances1983198719911993199519971999200120032005200720092011201320152017201920222023← 2013 2017 → Gibraltar competed at the 2015 World Championships in Athletics in Beijing, China, from 22–30 August 2015. Results (q – qualified, NM – no mark, SB – season best) Men Track an...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2020) سيف الله الأصرم رئيسة بلدية تونس في المنصب8 أبريل 2011 – 3 يوليو 2018 (7 سنواتٍ وشهران و25 يومًا) محمد الباجي بن مامي سعاد عبد الرحيم معلومات شخصية تاريخ الميلاد 1948 (ا
US television series GMA3: What You Need to KnowAlso known asGMA Day (2018–19)GMA3: Strahan & Sara (2019)GMA3: Strahan, Sara & Keke (2019–20)Pandemic: What You Need to Know (2020)GMA3: What You Need to Know (2020–present)GenreNews and talkCreated byJames GoldstonCatherine McKenzieDirected byLily OlszewskiPresented byJennifer AshtonDeMarco MorganEva PilgrimNarrated byRandy ThomasCountry of originUnited StatesOriginal languageEnglishNo. of seasons4ProductionExecutive producersJust...
2004 compilation album by the Who Then and NowGreatest hits album by The WhoReleased3 May 2004Recorded1964–2004GenreRockLength77:13LabelPolydor, GeffenProducerGlyn Johns, Kit Lambert, Bill Szymczyk, Shel Talmy, Simon Townshend, The WhoCompilerAndy McKaieThe Who chronology Live at the Royal Albert Hall(2003) Then and Now(2004) The 1st Singles Box(2004) Singles from Then and Now Real Good Looking Boy/Old Red WineReleased: 2004 Then and Now 1964–2007Compilation albumReleased11 June 2007R...
U-995 au Mémorial naval de Laboe. U-36, photo de 1936. Le terme U-Boot (abréviation d'Unterseeboot qui signifie sous-marin en allemand, au pluriel U-Boote selon la règle orthographique et la graphie allemandes, ou U-Boots selon la réforme de l'orthographe française de 1990) désigne les sous-marins allemands des deux guerres mondiales. Ils sont célèbres, entre autres, pour leurs campagnes d'attaques de convois de ravitaillement partant des États-Unis et du Canada pour l'Europe. Ce son...
2000 drama series broadcast by ATV in Hong Kong Divine RetributionVCD coverGenreFinancial thrillerDramaCreated byWai Ka-faiWritten byYau Nai-hoiTai Tak-kwongShek Hoi-tingYip Tin-shingHo Wing-ninDirected byTam Long-cheungLau Chun-mingLeung Yan-chuenYip Chiu-yeeLau Chi-fuStarringSean LauAdam ChengAmy KwokBen WongXu JingleiAlice ChanAnders NelssonBelinda HamnettKristal TinOpening themePasserby of the Great Era (大時代過客) by Adam ChengEnding themeHow Much Fame and Wealth (名利有幾多) ...
لوغوس (بالإغريقية: Λούος) (بالإنجليزية: Logos)، وهي من أشد الكلمات أهمية وأكثرها غموضا في الفكرين الغربيين الديني والفلسفي، إذ تدل في سياقات شتى على مدلولات متعددة، كالخطاب، اللغة، العقل الكلي، كلمة الإله، من بين معان أخرى.[1][2][3] عند هرقليطس هرقليطس، الفيلسوف ال...
Greek bonds 20 year 15 year 10 year 5 year 1 year 3 month 1 month Greek debt crisis Greek economy Tax evasion and corruption in Greece Financial crisis of 2007–2008 European debt crisis Financial audits, 2009–2010 Anti-austerity movement Election articles: 2011 proposed economy referendum May 2012 election Government formation June 2012 election January 2015 election Government formation 2015 Greek bailout...
Sweet GirlAlbum mini karya B1A4Dirilis10 Agustus 2015 (2015-08-10)Direkam2015GenreK-pop, dance-popBahasaKoreaLabel WM Entertainment LOEN Entertainment Kronologi B1A4 Solo Day(2014)Solo Day2014 Sweet Girl (2015) Good Timing(2016)Good Timing2016 Singel dalam album Sweet Girl Sweet GirlDirilis: 10 Agustus 2015 Sweet Girl adalah album mini keenam yang dirilis oleh B1A4 di bawah WM Entertainment. Album ini dirilis pada tanggal 10 Agustus 2015, oleh WM Entertainment (juga yang pertama didi...
Nota: Não confundir com a igreja de Santa Silvia, no quartiere Portuense. A Piazza di San Gregorio com a igreja de San Gregorio al Celio à direita e os três oratórios à no centro: o primeiro é Santa Barbara, o segundo, Sant'Andrea, e o terceiro, Santa Silvia. A rua com os arcos é o Clivo di Scauro e os edifícios à esquerda são parte do complexo de Santi Giovanni e Paolo. Oratorio di Santa Silvia al Celio é um oratório localizado na Piazza di San Gregorio, no rione Celio de R...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (December 2017) This article contains content that is written like an advertisement. Please help improve it by removi...
2005 greatest hits album by Iggy PopA Million in Prizes: The AnthologyGreatest hits album by Iggy PopReleasedJuly 19, 2005Recorded1969–2003GenrePunk rock, rock and roll, hard rockLength2:34:46LabelVirginProducervariousIggy Pop chronology Skull Ring(2003) A Million in Prizes: The Anthology(2005) Préliminaires(2009) Professional ratingsReview scoresSourceRatingAllMusic[1]Encyclopedia of Popular Music[2]Pitchfork7.9/10[3] A Million in Prizes: The Anthology is a...
Bài viết này là một bài mồ côi vì không có bài viết khác liên kết đến nó. Vui lòng tạo liên kết đến bài này từ các bài viết liên quan; có thể thử dùng công cụ tìm liên kết. (tháng 8 2020) Suối Trà VanVị tríQuốc giaViệt NamĐặc điểm địa lýThượng nguồn • cao độ? Cửa sôngSông Giá • cao độ?Độ dài19 kmDiện tích lưu vực63...
New Orleans neighborhood in Louisiana, United StatesB.W. Cooper Housing Development Calliope Housing ProjectsNew Orleans neighborhoodNicknames: CP3, Da CalliopeB.W. Cooper Housing DevelopmentCoordinates: 29°57′02″N 90°05′32″W / 29.95056°N 90.09222°W / 29.95056; -90.09222CountryUnited StatesStateLouisianaCityNew OrleansPolice DistrictDistrict 6, Central CityArea • Total0.30 sq mi (0.8 km2) • Land0.30 sq m...
2014 studio album by Snarky PuppyWe Like It HereStudio album by Snarky PuppyReleasedFebruary 25, 2014RecordedOctober 2013StudioKytopia Studios, Utrecht, NetherlandsGenreJazz fusionLength54:38LabelRopeadopeSnarky Puppy chronology Family Dinner – Volume 1(2013) We Like It Here(2014) Sylva(2015) We Like It Here is an album by American jazz fusion group Snarky Puppy that was released on February 25, 2014.[1] The track Lingus includes a solo on the synthesizer performed by Cory H...