Mathematics in Ancient Egypt: A Contextual History

First edition

Mathematics in Ancient Egypt: A Contextual History is a book on ancient Egyptian mathematics by Annette Imhausen. It was published by the Princeton University Press in 2016.

Topics

The history of ancient Egyptian mathematics covers roughly three thousand years, and as well as sketching the mathematics of this period, the book also provides background material on the culture and society of the period, and the role played by mathematics in society. These aspects of the subject advance the goal of understanding Egyptian mathematics in its cultural context rather than (as in much earlier work on the mathematics of ancient cultures) trying to translate it into modern mathematical ideas and notation.[1][2][3][4] Particular emphases of the book are the elite status of the scribes, the Egyptian class entrusted with mathematical calculations, the practical rather than theoretical approach to mathematics taken by the scribes,[5] and the ways that Egyptian conceptualizations of numbers affected the methods they used to solve mathematical problems.[4]

In keeping with that change in emphasis, the book is ordered by time period rather than by mathematical topics.[3] After an introduction that reviews past studies of the subject and calls for a reassessment of their conclusions,[6] it divides its history into five major eras: prehistoric Egypt and the Early Dynastic Period, the Old Kingdom of Egypt, the Middle Kingdom of Egypt, the New Kingdom of Egypt, and Hellenistic and Roman Egypt.[3][6][7]

The topics covered in the book include the Egyptian numbering systems, in both spoken and written (hieroglyphic) form, arithmetic, Egyptian fractions, and systems of measurement,[1][2] their lunar calendar, calculations of volumes of solids, and word problems involving the measurement of beer and grain.[8] As well, it covers the use of mathematics by the scribes in architectural design and the measurement of land.[7][9] Although much past effort has gone into questions such as trying to deduce the rules used by the scribes to calculate their tables of representations of fractions of the form 2/n, that sort of mathematical exercise has been avoided here in place of a description of how the Egyptians used these tables and their other mathematical methods in solving practical problems.[9]

Because documents recording Egyptian mathematical knowledge are scarce, much of the book's history comes from other less directly mathematical objects, including the Egyptian architectural accomplishments, their burial goods, and their tax records, administrative writings, and literature.[8][7] The book also discusses the mathematical problems and their solutions recorded from the small number of surviving mathematical documents including the Rhind papyrus, Lahun Mathematical Papyri, Moscow Mathematical Papyrus, Egyptian Mathematical Leather Roll,[1][2] Carlsberg papyrus 30[10][2], and the Ostraca Senmut 153 and Turin 57170,[9] placed in context by comparison with other less directly mathematical objects and texts from ancient Egypt, such as Instruction of Amenemope, Papyrus Harris I, Wilbour Papyrus, and Papyrus Anastasi I.[2]

Audience and reception

The audience for this book, according to reviewer Kevin Davis, is "mid-way between a specialised and a general readership".[8] Alex Criddle echoes this opinion, suggesting that "those without a special interest in mathematics may find it very dry and hard to understand" but that it should be read by "anyone interested in the history of mathematics, egyptology, or Egyptian culture".[7] Although little specialized knowledge is needed to read this book, readers are expected to understand the basic concepts of modern arithmetic, and to have a general idea of Egyptian geography.[5] Reviewer Victor Pambuccian sees the book as excessively hostile towards the mathematical study of Egyptian mathematics,[9] while reviewer Stephen Chrisomalis sees it as bridging a longstanding gap between historians of the ancient world and historians of mathematics, and sees the book as aimed primarily at specialists in these fields.[4]

Pambuccian faults the book for miscrediting later historians with insights that repeated those of Oswald Spengler,[9] and Chrisomalis takes issue with the book's treatment of hieratic numerals as being equivalent to decimal for the purposes of calculation.[4] Martine Jansen asks for more examples,[11], and similarly reviewer Joaquim Eurico Anes Duarte Nogueira suggests that more photos and added material on Egyptian games would have made the presentation more appealing. Nogueira also complains that the heavy use of notation based on that of the Egyptians, rather than translation into modern notation, makes the work hard to follow. He adds that although it seems aimed at a popular audience he thinks it will be of more interest to specialists in this area.[1] In contrast, reviewer Glen Van Brummelen writes that the book's "explanations are thorough and generally easy to understand, even for an interested lay person",[3] and reviewer Calvin Johnsma specifically praises the book's efforts to present ancient Egyptian mathematics for what it was rather than converting it into modern forms, avoiding the anachronistic distortions of modern algebraic notation. On the other hand, Johnsma would have preferred to see deeper coverage of the algebraic nature of Egyptian problem-solving techniques, of their changing notions of fractions, and of their geometry.[2]

Although Nogueira calls the book "good, but not excellent",[1] some other reviewers are more positive. Reviewer H. Rindler calls it "an excellent introduction to the current state of knowledge",[12] Davis calls it "head and shoulders above others" on the same topic,[8] and Johnsma calls it "a deeply informed up-to-date contextual history", "masterful", and "highly accessible" to non-experts.[2]

References

  1. ^ a b c d e Nogueira, Joaquim Eurico Anes Duarte, "Review of Mathematics in Ancient Egypt", Mathematical Reviews, MR 3467610
  2. ^ a b c d e f g Jongsma, Calvin (June 2016), "Review", MAA Reviews
  3. ^ a b c d Van Brummelen, Glen (September 2016), "Review" (PDF), Newsletter of the London Mathematical Society, 461: 40–41
  4. ^ a b c d Chrisomalis, Stephen (October 2017), "Review of Mathematics in Ancient Egypt", Journal of Near Eastern Studies, 76 (2): 372–375, doi:10.1086/693357
  5. ^ a b Cumo, Christopher (July 2017), "Review of Mathematics in Ancient Egypt", Canadian Journal of History, 52 (2): 396–398, doi:10.3138/cjh.ach.52.2.rev35, S2CID 189216514
  6. ^ a b Prince, Clive (January 2017), "Counting like an Egyptian", Magonia Review of Books
  7. ^ a b c d Criddle, Alex (May 2017), "Review", World History Encyclopedia
  8. ^ a b c d Davis, Kevin (February 2017), "Review of Mathematics in Ancient Egypt", The Mathematical Gazette, 101 (550): 163–165, doi:10.1017/mag.2017.31, S2CID 184856137
  9. ^ a b c d e Pambuccian, Victor, "Review of Mathematics in Ancient Egypt", zbMATH, Zbl 1336.01010, reprinted in European Mathematical Society Newsletter 101: 57, 2016
  10. ^ Moreno-Castillo, Ricardo (July 2017), "Review" (PDF), European Mathematical Society Reviews, archived from the original on 2020-12-30
  11. ^ Jansen, Martine (2017), "Review of Mathematics in Ancient Egypt" (PDF), Nieuw Archief voor Wiskunde, 5th Series (in Dutch), 18 (1): 73–74
  12. ^ Rindler, H. (September 2018), "Review of Mathematics in Ancient Egypt", Monatshefte für Mathematik (in German), 187 (3): 573–575, doi:10.1007/s00605-018-1220-9, S2CID 189783722

Read other articles:

Jalan Raya Trans-PapuaPersimpangan besarUjung Barat:Sorong JayapuraUjung Timur:MeraukeSistem jalan bebas hambatanJalan Nasional Indonesia Sistem Jalan di Indonesia Jalan Tol Jalan raya Jalan Trans Papua adalah jaringan jalan nasional yang menghubungkan setiap provinsi di Papua, membentang dari Kota Sorong di Papua Barat Daya hingga Merauke di Papua Selatan, dengan total panjang mencapai 4.330,07 kilometer (km). Total panjang tersebut terbagi atas 3.259,45 km di Provinsi Papua -...

 

 

Esociformes Berbagai anggota famili esocidae Umbra krameri Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Superordo: Protacanthopterygii Ordo: EsociformesBleeker, 1859 Famili Esocidae G. Cuvier, 1817 Umbridae Bonaparte, 1845 Sinonim Esocoidei Bleeker, 1859 Haplomi Esocae Umbriformes Günther, 1866 Esociformes adalah ordo kecil ikan bersirip kipas yang hanya terdiri dari dua famili, yakni Umbridae dan Esocidae. Ordo ini berkerabat dekat dengan ordo Salmoniformes y...

 

 

Baptisterium LateranBattistero lateranenseInterior baptisterium41°53′10.14″N 12°30′15.44″E / 41.8861500°N 12.5042889°E / 41.8861500; 12.5042889Koordinat: 41°53′10.14″N 12°30′15.44″E / 41.8861500°N 12.5042889°E / 41.8861500; 12.5042889LokasiRomeNegara ItaliaArsitekturTipe arsitekturBaptisteriumPeletakan batu pertama440 Baptisterium Lateran (Italia: Battistero lateranensecode: it is deprecated ) adalah sebuah baptister...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Ulysses S. Grant Presiden Amerika Serikat ke-18Masa jabatan4 Maret 1869 – 4 Maret 1877Wakil PresidenSchuyler Colfax (1869-1873),Henry W...

 

 

Not to be confused with Methoxetamine. Methoxyketamine Names IUPAC name 2-(2-Methoxyphenyl)-2-(methylamino)cyclohexanone Identifiers CAS Number 7063-51-6 Y6728-62-7 (HCl) Y 3D model (JSmol) Interactive image ChemSpider 27470964 PubChem CID 57483650 UNII U4I8JIS24N Y2OVB5UO35R (HCl) Y CompTox Dashboard (EPA) DTXSID30990849 InChI InChI=1S/C14H19NO2/c1-15-14(10-6-5-9-13(14)16)11-7-3-4-8-12(11)17-2/h3-4,7-8,15H,5-6,9-10H2,1-2H3Key: OYAUVHORXFUVAJ-UHFFFAOYSA-NInC...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (juillet 2018). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Édouard de Cazenove de PradinesFonctionsDéputé ...

Town in Brandenburg, GermanyDrebkau DrjowkTownTown hall Coat of armsLocation of Drebkau within Spree-Neiße district Drebkau Show map of GermanyDrebkau Show map of BrandenburgCoordinates: 51°39′N 14°13′E / 51.650°N 14.217°E / 51.650; 14.217CountryGermanyStateBrandenburgDistrictSpree-Neiße Subdivisions10 OrtsteileGovernment • Mayor (2018–26) Paul Köhne[1] (CDU)Area • Total142.94 km2 (55.19 sq mi)Elevation87&...

 

 

Questa voce sull'argomento centri abitati del Paraná è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. União da Vitóriacomune União da Vitória – Veduta LocalizzazioneStato Brasile Stato federato Paraná MesoregioneSudeste Paranaense MicroregioneUnião da Vitória AmministrazioneSindacoPedro Ivo Ilkiv (PT) dal 2013 Data di istituzione1890 TerritorioCoordinate26°13′35″S 51°03′42″W / 26.226389°S 51.061...

 

 

Archaeocyatha Periode Tommotium - Kambrium Tengah PreЄ Є O S D C P T J K Pg N ↓ TaksonomiSuperkerajaanEukaryotaKerajaanAnimaliaFilumPoriferaKelasArchaeocyatha Tata namaSinonim takson Cyathospongia Okulitch, 1935 Pleospongia Okulitch, 1935 lbs Archaeocyatha (/ˈɑːrkioʊsaɪəθə/, 'mangkok kuno') adalah sebuah takson punah dari spons laut sesil pembangun karang[1] yang hidup di perairan hangat tropis dan subtropis pada periode Kambrium. Diyakini bahwa pusat kemunculan Archae...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Taipei Nan Shan Plaza – news · newspapers · books · scholar · JSTOR (December 2017) (Learn how and when to remove this message) Office building, department store in Taipei, TaiwanTaipei Nan Shan Plaza臺北南山廣場Taipei Nan Shan Plaza in 2023General inform...

 

 

Historic house in Massachusetts, United States United States historic placeFairbanks HouseU.S. National Register of Historic PlacesU.S. National Historic Landmark Fairbanks House in 2013Show map of MassachusettsShow map of the United StatesInteractive map showing the location of Fairbanks HouseLocation511 East Street, Dedham, MassachusettsCoordinates42°14′36″N 71°10′04″W / 42.24333°N 71.16778°W / 42.24333; -71.16778Builtca. 1637[1]NRHP referenc...

 

 

У этого топонима есть и другие значения, см. Ревда. ГородРевда вид на город с Лысой горы Флаг Герб 56°48′ с. ш. 59°55′ в. д.HGЯO Страна  Россия Статус Город областного подчинения Субъект Федерации Свердловская область Городской округ Ревда Глава городского округа �...

Voce principale: Campionato mondiale di calcio 1974. Finale del campionato mondiale di calcio 1974I tedeschi occidentali Wolfgang Overath e Gerd Müller sollevano la coppa FIFAInformazioni generaliSport Calcio Competizione1974 FIFA World Cup knockout stage Data7 luglio 1974 CittàMonaco di Baviera ImpiantoStadio Olimpico Spettatori75 200 Dettagli dell'incontro Paesi Bassi Germania Ovest 1 2 Arbitro Jack Taylor (Inghilterra) Successione ← Finale del campionato mondiale di calc...

 

 

Mid-ocean ridge in the South Atlantic between the South American Plate and the Antarctic Plate Bathymetric map of the South American-Antarctic Ridge The South American–Antarctic Ridge or simply American-Antarctic Ridge (SAAR or AAR) (in Spanish: Dorsal Antártico-Americana) is the tectonic spreading center between the South American Plate and the Antarctic Plate. It runs along the sea-floor from the Bouvet Triple Junction in the South Atlantic Ocean south-westward to a major transform fault...

 

 

Докладніше: Збірна України з футболу Країни за кількістю матчів їхніх збірних проти збірної України. Список включає всіх суперників національної збірної України в офіційних матчах, починаючи з першого матчу проти збірної Угорщини 29 квітня 1992 року. Станом на 26 березня ...

Voce principale: Associazione Calcio Ancona. Ancona CalcioStagione 1996-1997Sport calcio Squadra Ancona Allenatore Giuseppe Petrelli poi Mario Colautti poi Fabio Brini Presidente Angelo Deodati (Amministratore Unico) Serie C12º posto nel girone B. Promossa in Serie B. Maggiori presenzeCampionato: Cesaretti, Tentoni (33) Miglior marcatoreCampionato: Lucidi, Tentoni (5) 1995-1996 1997-1998 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Ancona C...

 

 

Political party in Australia For the Australian party (1989–1991), Joh Bjelke-Petersen, see Australian Conservative Party. For the Australian party (1984–1998), see Conservative Party of Australia. Australian Conservatives LeaderCory Bernardi[a]FounderCory BernardiFounded7 February 2017; 7 years ago (7 February 2017)[b]Dissolved25 June 2019Split fromLiberal PartyHeadquartersKing William Street, Kent Town, South Australia 5067Membership (2017) 22,000[c...

 

 

Alben William BarkleyAlben Barkley Wakil Presiden Amerika SerikatMasa jabatan20 Januari 1949 – 20 Januari 1953PendahuluHarry S. TrumanPenggantiRichard Milhous Nixon Informasi pribadiLahir(1877-11-24)24 November 1877Lowes, Kentucky, Amerika SerikatMeninggal30 Mei 1956(1956-05-30) (umur 78)Lexington, Virginia, Amerika SerikatPartai politikDemokratSuami/istriJane Hadley BarkleyPekerjaanJaksaSunting kotak info • L • B Alben William Barkley lahir di dekat Lowes, Grave...

明朝关西八卫 赤斤蒙古卫,明朝关西八卫之一,简称赤斤卫,又作赤金卫。 明朝 明朝永乐二年(1404年)元朝丞相苦术之子塔力尼投降明朝,以其所部在赤斤站设置赤斤蒙古千户所,在今甘肃省玉门市西北赤金堡。永乐八年(1410年)升为赤斤卫,正德年间被吐鲁番汗国所破,当地人内徙肃州的南山,赤斤城空。 清朝 清圣祖康熙五十七年(1718年),恢复赤金卫,清世宗雍正...

 

 

British writer and illustrator Fred T. Jane with his Naval War Game in 1898 Heresies of Sea Power (1906) by Fred T. Jane published by Longmans, Green, and Co. John Fredrick Thomas Jane (6 August 1865 – 8 March 1916) was an author, war gamer, and founding editor of All the World's Fighting Ships and All the World's Airships. Biography Jane was born in Richmond, Surrey, England, but worked most of his life in Portsmouth. His father was a Church of England vicar. He attended Exeter School.[...