Mass diffusivity

Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry.

The diffusivity is generally prescribed for a given pair of species and pairwise for a multi-species system. The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm2/s, and in water its diffusion coefficient is 0.0016 mm2/s.[1][2]

Diffusivity has dimensions of length2 / time, or m2/s in SI units and cm2/s in CGS units.

Temperature dependence of the diffusion coefficient

Solids

The diffusion coefficient in solids at different temperatures is generally found to be well predicted by the Arrhenius equation:

where

  • D is the diffusion coefficient (in m2/s),
  • D0 is the maximal diffusion coefficient (at infinite temperature; in m2/s),
  • EA is the activation energy for diffusion (in J/mol),
  • T is the absolute temperature (in K),
  • R ≈ 8.31446 J/(mol⋅K) is the universal gas constant.

Diffusion in crystalline solids, termed lattice diffusion, is commonly regarded to occur by two distinct mechanisms,[3] interstitial and substitutional or vacancy diffusion. The former mechanism describes diffusion as the motion of the diffusing atoms between interstitial sites in the lattice of the solid it is diffusion into, the latter describes diffusion through a mechanism more analogue to that in liquids or gases: Any crystal at nonzero temperature will have a certain number of vacancy defects (i.e. empty sites on the lattice) due to the random vibrations of atoms on the lattice, an atom neighbouring a vacancy can spontaneously "jump" into the vacancy, such that the vacancy appears to move. By this process the atoms in the solid can move, and diffuse into each other. Of the two mechanisms, interstitial diffusion is typically more rapid.[3]

Liquids

An approximate dependence of the diffusion coefficient on temperature in liquids can often be found using Stokes–Einstein equation, which predicts that

where

  • D is the diffusion coefficient,
  • T1 and T2 are the corresponding absolute temperatures,
  • μ is the dynamic viscosity of the solvent.

Gases

The dependence of the diffusion coefficient on temperature for gases can be expressed using Chapman–Enskog theory (predictions accurate on average to about 8%):[4]

where

  • D is the diffusion coefficient (cm2/s),[4][5]
  • A is approximately (with Boltzmann constant , and Avogadro constant )
  • 1 and 2 index the two kinds of molecules present in the gaseous mixture,
  • T is the absolute temperature (K),
  • M is the molar mass (g/mol),
  • p is the pressure (atm),
  • is the average collision diameter (the values are tabulated[6] page 545) (Å),
  • Ω is a temperature-dependent collision integral (the values tabulated for some intermolecular potentials,[6] can be computed from correlations for others,[7] or must be evaluated numerically.) (dimensionless).

The relation

is obtained when inserting the ideal gas law into the expression obtained directly from Chapman-Enskog theory,[8] which may be written as

where is the molar density (mol / m) of the gas, and

,

with the universal gas constant. At moderate densities (i.e. densities at which the gas has a non-negligible co-volume, but is still sufficiently dilute to be considered as gas-like rather than liquid-like) this simple relation no longer holds, and one must resort to Revised Enskog Theory.[9] Revised Enskog Theory predicts a diffusion coefficient that decreases somewhat more rapidly with density, and which to a first approximation may be written as

where is the radial distribution function evaluated at the contact diameter of the particles. For molecules behaving like hard, elastic spheres, this value can be computed from the Carnahan-Starling Equation, while for more realistic intermolecular potentials such as the Mie potential or Lennard-Jones potential, its computation is more complex, and may involve invoking a thermodynamic perturbation theory, such as SAFT.

Pressure dependence of the diffusion coefficient

For self-diffusion in gases at two different pressures (but the same temperature), the following empirical equation has been suggested:[4] where

  • D is the diffusion coefficient,
  • ρ is the gas mass density,
  • P1 and P2 are the corresponding pressures.

Population dynamics: dependence of the diffusion coefficient on fitness

In population dynamics, kinesis is the change of the diffusion coefficient in response to the change of conditions. In models of purposeful kinesis, diffusion coefficient depends on fitness (or reproduction coefficient) r:

where is constant and r depends on population densities and abiotic characteristics of the living conditions. This dependence is a formalisation of the simple rule: Animals stay longer in good conditions and leave quicker bad conditions (the "Let well enough alone" model).

Effective diffusivity in porous media

The effective diffusion coefficient describes diffusion through the pore space of porous media.[10] It is macroscopic in nature, because it is not individual pores but the entire pore space that needs to be considered. The effective diffusion coefficient for transport through the pores, De, is estimated as follows: where

  • D is the diffusion coefficient in gas or liquid filling the pores,
  • εt is the porosity available for the transport (dimensionless),
  • δ is the constrictivity (dimensionless),
  • τ is the tortuosity (dimensionless).

The transport-available porosity equals the total porosity less the pores which, due to their size, are not accessible to the diffusing particles, and less dead-end and blind pores (i.e., pores without being connected to the rest of the pore system). The constrictivity describes the slowing down of diffusion by increasing the viscosity in narrow pores as a result of greater proximity to the average pore wall. It is a function of pore diameter and the size of the diffusing particles.

Example values

Gases at 1 atm., solutes in liquid at infinite dilution. Legend: (s) – solid; (l) – liquid; (g) – gas; (dis) – dissolved.

Values of diffusion coefficients (gas)[4]
Species pair Temperature
(°C)
D
(cm2/s)
Solute Solvent
Water (g) Air (g) 25 0.260
Oxygen (g) Air (g) 25 0.176
Values of diffusion coefficients (liquid)[4]
Species pair Temperature
(°C)
D
(cm2/s)
Solute Solvent
Acetone (dis) Water (l) 25 1.16×10−5
Air (dis) Water (l) 25 2.00×10−5
Ammonia (dis) Water (l) 12[citation needed] 1.64×10−5
Argon (dis) Water (l) 25 2.00×10−5
Benzene (dis) Water (l) 25 1.02×10−5
Bromine (dis) Water (l) 25 1.18×10−5
Carbon monoxide (dis) Water (l) 25 2.03×10−5
Carbon dioxide (dis) Water (l) 25 1.92×10−5
Chlorine (dis) Water (l) 25 1.25×10−5
Ethane (dis) Water (l) 25 1.20×10−5
Ethanol (dis) Water (l) 25 0.84×10−5
Ethylene (dis) Water (l) 25 1.87×10−5
Helium (dis) Water (l) 25 6.28×10−5
Hydrogen (dis) Water (l) 25 4.50×10−5
Hydrogen sulfide (dis) Water (l) 25 1.41×10−5
Methane (dis) Water (l) 25 1.49×10−5
Methanol (dis) Water (l) 25 0.84×10−5
Nitrogen (dis) Water (l) 25 1.88×10−5
Nitric oxide (dis) Water (l) 25 2.60×10−5
Oxygen (dis) Water (l) 25 2.10×10−5
Propane (dis) Water (l) 25 0.97×10−5
Water (l) Acetone (l) 25 4.56×10−5
Water (l) Ethyl alcohol (l) 25 1.24×10−5
Water (l) Ethyl acetate (l) 25 3.20×10−5
Values of diffusion coefficients (solid)[4]
Species pair Temperature
(°C)
D
(cm2/s)
Solute Solvent
Hydrogen Iron (s) 10 1.66×10−9
Hydrogen Iron (s) 100 124×10−9
Aluminium Copper (s) 20 1.3×10−30

See also

References

  1. ^ CRC Press Online: CRC Handbook of Chemistry and Physics, Section 6, 91st Edition
  2. ^ Diffusion
  3. ^ a b Callister, William D.; Rethwisch, David G. (2012). Fundamentals of materials science and engineering: an integrated approach (4 ed.). Hoboken, NJ: Wiley. ISBN 978-1-118-06160-2.
  4. ^ a b c d e f Cussler, E. L. (1997). Diffusion: Mass Transfer in Fluid Systems (2nd ed.). New York: Cambridge University Press. ISBN 0-521-45078-0.
  5. ^ Welty, James R.; Wicks, Charles E.; Wilson, Robert E.; Rorrer, Gregory (2001). Fundamentals of Momentum, Heat, and Mass Transfer. Wiley. ISBN 978-0-470-12868-8.
  6. ^ a b Hirschfelder, J.; Curtiss, C. F.; Bird, R. B. (1954). Molecular Theory of Gases and Liquids. New York: Wiley. ISBN 0-471-40065-3.
  7. ^ "К юбилею Г.И. Канеля". Теплофизика высоких температур (in Russian). 52 (4): 487–488. 2014. doi:10.7868/s0040364414040279. ISSN 0040-3644.
  8. ^ Chapman, Sydney; Cowling, Thomas George; Burnett, David (1990). The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge mathematical library (3rd ed.). Cambridge New York Port Chester [etc.]: Cambridge university press. ISBN 978-0-521-40844-8.
  9. ^ Cohen, E. G. D. (1993-03-15). "Fifty years of kinetic theory". Physica A: Statistical Mechanics and its Applications. 194 (1): 229–257. doi:10.1016/0378-4371(93)90357-A. ISSN 0378-4371.
  10. ^ Grathwohl, P. (1998). Diffusion in natural porous media: Contaminant transport, sorption / desorption and dissolution kinetics. Kluwer Academic. ISBN 0-7923-8102-5.

Read other articles:

Para otros usos de este término, véase Multiverso (desambiguación). Cosmología física Big Bang y evolución del universo ArtículosUniverso primitivo Teoría del Big Bang · Inflación cósmica · Bariogénesis · Nucleosíntesis primordial · CreacionismoExpansión Expansión métrica del espacio · Expansión acelerada del universo · Ley de Hubble · Corrimiento al rojoEstructura Forma del universo · Espacio-tiempo · Materia bariónica · Universo · Materia oscura · Energía oscu...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Andarias Kayukatui adalah seorang politikus Indonesia. Ia menjabat sebagai Kepala Pelaksana BPBD Kabupaten Teluk Wondama dari 2014 sampai 2015. Pada Pemilihan umum Bupati Teluk Wondama 2020, ia terpilih menjadi Wakil Bupati Teluk Wondama mendampingi Hendrik Syake Mambor selaku Bupati Teluk Wondama.[1] Referensi ^ Gubernur Mandacan Lantik Bupati dan Wakil Bupati Teluk Wondama. papuabarat.antaranews.com. 5 Mei 2021. Diakses tanggal 7 Februari 2022.  Artikel bertopik biografi Indone...

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional.Biji jengkol Intoksikasi jengkol atau keracunan jengkol (Inggris: djenkolismcode: en is deprecated ; djenkol bean poisoning) adalah penyakit p...

 

 

Akademi Komunitas Negeri Seni dan Budaya YogyakartaJenisAkademi komunitasDidirikan2015Lembaga indukKementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik IndonesiaRektorDrs. Supadma, M.HumAlamatJl. Parangtritis No.364, Pandes, Panggungharjo, Sewon, Bantul, DIYSitus webaknyogya.ac.id Akademi Komunitas Negeri Seni dan Budaya Yogyakarta atau AKNSB Yogyakarta adalah perguruan tinggi negeri berbentuk akademi komunitas yang berada di Kabupaten Bantul, Daerah Istimewa Yogyakarta dan dikel...

 

 

Zig and SharkoTitlePembuatOlivier Jean-MarieSutradaraOlivier Jean-MarieNegara asal PrancisJmlh. musim2Jmlh. episode156ProduksiProduser eksekutifMarc du PontaviceProduserMarc du PontaviceDurasi7 menitRumah produksiXilamRilis asliJaringanCanal+ (Prancis) TF1 (Prancis) Cartoon Network (India) Nickelodeon (India) Global TV (Indonesia) Boomerang (Italia) Disney Channel (Asia)Rilis21 Desember 2010-sekarangAcara terkaitSpace GoofsOggy and the Cockroaches Zig and Sharko adalah animasi komedi bu...

Pour les articles homonymes, voir Bliss. Cet article est une ébauche concernant un homme politique américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Cornelius Newton Bliss Fonctions 21e secrétaire à l'Intérieur des États-Unis 6 mars 1897 – 19 février 1899(1 an, 11 mois et 13 jours) Président William McKinley Gouvernement Administration McKinley Prédécesseur David R. Francis Su...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحس...

 

 

في الجبر التجريدي البنية الجبرية (بالإنجليزية: algebraic structure)‏ تتألف من مجموعة مزودة بمجموعة من العمليات أو العلاقات الرياضية المعرفة عليها بحيث تحقق بدهيات axiom معينة. مثلا الزمرة (G,*) يشار لها عادة بالزمرة G. في حال كانت المجموعة مزودة بعلاقات رياضية فقط دون أي عمليات نقول عنه�...

Jordi Osei-Tutu Nazionalità  Inghilterra Altezza 176 cm Peso 70 kg Calcio Ruolo Centrocampista Squadra  PAS Giannina Carriera Giovanili 20??-2015 Reading2015-2019 Arsenal Squadre di club1 2019-2020→  Bochum21 (5)2020-2021→  Cardiff City8 (0)2021-2022→  Nottingham Forest4 (0)2022→  Rotherham Utd14 (0)2022-2024 Bochum20 (0)2024-→  PAS Giannina0 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campiona...

 

 

Hindu temple in Singapore For other temples with the same name, see Mariamman Temple and Sri Mariamman Temple (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2016) (Learn how and when to remove this template message) Sri Mariamman Templeஶ்ரீ மாரியம்மன் கோவில்The gopuram (entrance tower) of Sri M...

 

 

U.S. House district for Massachusetts Massachusetts's 6th congressional districtInteractive map of district boundaries since January 3, 2023Representative  Seth MoultonD–SalemArea480.31 sq mi (1,244.0 km2)Distribution73.15% urban26.85% ruralPopulation (2022)771,813Median householdincome$106,226[1]Ethnicity76.7% White10.9% Hispanic4.9% Asian3.6% Two or more races3.1% Black0.9% otherOccupation69.7% White-collar17.2% Blue-collar13.1% Gray-collarCook PVID+11[2 ...

American news panel radio game show Wait Wait... Don't Tell Me!GenreQuiz showpanel showcomedyRunning timeApprox. 50 min.Country of originUnited StatesLanguage(s)EnglishHome stationWBEZ in Chicago, IllinoisSyndicatesNPRWBEZHosted byDan Coffey (1998) Peter Sagal (1998–present)AnnouncerCarl Kasell (1998–2014)Bill Kurtis (2014–present)Created byDoug BermanProduced byMiles DoornbosIan ChillagJennifer MillsLillian KingRobert NeuhausLorna WhiteColin MillerShayna DonaldExecutive producer(s)Mike...

 

 

Peter Graves Peter Graves, pseudonimo di Peter Aurness (Minneapolis, 18 marzo 1926 – Los Angeles, 14 marzo 2010[1]), è stato un attore e regista statunitense. Indice 1 Carriera 2 Filmografia parziale 2.1 Cinema 2.2 Film d'animazione 2.3 Televisione 3 Doppiatori italiani 4 Note 5 Altri progetti 6 Collegamenti esterni Carriera Fratello dell'attore James Arness, è principalmente conosciuto per la sua interpretazione di Jim Newton, il padre adottivo di Joey, nella serie televisiva di ...

 

 

بيت طيما الإحداثيات 31°37′24″N 34°38′21″E / 31.62333333°N 34.63916667°E / 31.62333333; 34.63916667   تقسيم إداري  البلد فلسطين الانتدابية  التقسيم الأعلى قضاء غزة  تعديل مصدري - تعديل   بيت طيما هي قرية فلسطينية في قضاء غزة، وتقع 21 كيلومترا (13 ميل) إلى الشمال الشرقي من غزة وحوال...

Case of Human rights in Tunisia Politics of Tunisia Member State of the African Union Member State of the Arab League Constitution Current constitution Constitution of 2022 Past constitution Constitution of 1959 Constitution of 2014 Executive President (List) Kais Saied Prime Minister (List) Ahmed Hachani Cabinet Legislature National Council of Regions and Districts Speaker Assembly of the Representatives of the People Speaker Judiciary Court of Cassation Elections Recent elections Presidenti...

 

 

Japanese sword worn by the samuraiFor other uses, see Tachi (disambiguation). Tachi (太刀) Itomaki-no-tachi style sword mounting with chrysanthemum and paulownia crests on nashiji laquer ground. The blade was made by Masatsune. Blade, 12th century; mounting, 18th century. Tokyo National Museum.TypeSwordPlace of originJapanProduction historyProducedHeian period (794–1185) to presentSpecificationsBlade lengthapprox. 70–80 cm (28–31 in)Blade typeCurved, sing...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 17° خط طول 17 غرب خريطة لجميع الإحداثيات من جوجل خريطة لجميع الإحداثيات من بينغ تصدير جميع الإحداثيات من كي...

Practice by real estate brokers Racial steering refers to the practice in which real estate brokers guide prospective home buyers towards or away from certain neighborhoods based on their race. The term is used in the context of de facto residential segregation in the United States, and is often divided into two broad classes of conduct: Advising customers to purchase homes in particular neighborhoods on the basis of race. Failing, on the basis of race, to show, or to inform buyers of homes t...

 

 

San GenesioLocalizzazioneStato Italia RegioneToscana Mappa di localizzazione Modifica dati su Wikidata · Manuale Cappella di San Genesio ed esterno dell'area archeologica Il sito archeologico di San Genesio (anche Borgo San Genesio, vico Wallari) si trova in provincia di Pisa, nel comune di San Miniato tra le località Ponte a Elsa e La Scala. Il borgo è stato ritenuto l'insediamento dal quale si è originata a partire dal XIII secolo la città di San Miniato[1]. Per i num...