Maschke's theorem

In mathematics, Maschke's theorem,[1][2] named after Heinrich Maschke,[3] is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make general conclusions about representations of a finite group G without actually computing them. It reduces the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character.

Formulations

Maschke's theorem addresses the question: when is a general (finite-dimensional) representation built from irreducible subrepresentations using the direct sum operation? This question (and its answer) are formulated differently for different perspectives on group representation theory.

Group-theoretic

Maschke's theorem is commonly formulated as a corollary to the following result:

Theorem —  is a representation of a finite group over a field with characteristic not dividing the order of . If has a subrepresentation , then it has another subrepresentation such that .[4][5]

Then the corollary is

Corollary (Maschke's theorem) — Every representation of a finite group over a field with characteristic not dividing the order of is a direct sum of irreducible representations.[6][7]

The vector space of complex-valued class functions of a group has a natural -invariant inner product structure, described in the article Schur orthogonality relations. Maschke's theorem was originally proved for the case of representations over by constructing as the orthogonal complement of under this inner product.

Module-theoretic

One of the approaches to representations of finite groups is through module theory. Representations of a group are replaced by modules over its group algebra  (to be precise, there is an isomorphism of categories between and , the category of representations of ). Irreducible representations correspond to simple modules. In the module-theoretic language, Maschke's theorem asks: is an arbitrary module semisimple? In this context, the theorem can be reformulated as follows:

Maschke's Theorem — Let be a finite group and a field whose characteristic does not divide the order of . Then , the group algebra of , is semisimple.[8][9]

The importance of this result stems from the well developed theory of semisimple rings, in particular, their classification as given by the Wedderburn–Artin theorem. When is the field of complex numbers, this shows that the algebra is a product of several copies of complex matrix algebras, one for each irreducible representation.[10] If the field has characteristic zero, but is not algebraically closed, for example if is the field of real or rational numbers, then a somewhat more complicated statement holds: the group algebra is a product of matrix algebras over division rings over . The summands correspond to irreducible representations of over .[11]

Category-theoretic

Reformulated in the language of semi-simple categories, Maschke's theorem states

Maschke's theorem — If G is a group and F is a field with characteristic not dividing the order of G, then the category of representations of G over F is semi-simple.

Proofs

Group-theoretic

Let U be a subspace of V complement of W. Let be the projection function, i.e., for any .

Define , where is an abbreviation of , with being the representation of G on W and V. Then, is preserved by G under representation : for any ,

so implies that . So the restriction of on is also a representation.

By the definition of , for any , , so , and for any , . Thus, , and . Therefore, .

Module-theoretic

Let V be a K[G]-submodule. We will prove that V is a direct summand. Let π be any K-linear projection of K[G] onto V. Consider the map

Then φ is again a projection: it is clearly K-linear, maps K[G] to V, and induces the identity on V (therefore, maps K[G] onto V). Moreover we have

so φ is in fact K[G]-linear. By the splitting lemma, . This proves that every submodule is a direct summand, that is, K[G] is semisimple.

Converse statement

The above proof depends on the fact that #G is invertible in K. This might lead one to ask if the converse of Maschke's theorem also holds: if the characteristic of K divides the order of G, does it follow that K[G] is not semisimple? The answer is yes.[12]

Proof. For define . Let . Then I is a K[G]-submodule. We will prove that for every nontrivial submodule V of K[G], . Let V be given, and let be any nonzero element of V. If , the claim is immediate. Otherwise, let . Then so and

so that is a nonzero element of both I and V. This proves V is not a direct complement of I for all V, so K[G] is not semisimple.

Non-examples

The theorem can not apply to the case where G is infinite, or when the field K has characteristics dividing #G. For example,

  • Consider the infinite group and the representation defined by . Let , a 1-dimensional subspace of spanned by . Then the restriction of on W is a trivial subrepresentation of . However, there's no U such that both W, U are subrepresentations of and : any such U needs to be 1-dimensional, but any 1-dimensional subspace preserved by has to be spanned by an eigenvector for , and the only eigenvector for that is .
  • Consider a prime p, and the group , field , and the representation defined by . Simple calculations show that there is only one eigenvector for here, so by the same argument, the 1-dimensional subrepresentation of is unique, and cannot be decomposed into the direct sum of two 1-dimensional subrepresentations.

Notes

  1. ^ Maschke, Heinrich (1898-07-22). "Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen" [On the arithmetical character of the coefficients of the substitutions of finite linear substitution groups]. Math. Ann. (in German). 50 (4): 492–498. doi:10.1007/BF01444297. JFM 29.0114.03. MR 1511011.
  2. ^ Maschke, Heinrich (1899-07-27). "Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind" [Proof of the theorem that those finite linear substitution groups, in which some everywhere vanishing coefficients appear, are intransitive]. Math. Ann. (in German). 52 (2–3): 363–368. doi:10.1007/BF01476165. JFM 30.0131.01. MR 1511061.
  3. ^ O'Connor, John J.; Robertson, Edmund F., "Heinrich Maschke", MacTutor History of Mathematics Archive, University of St Andrews
  4. ^ Fulton & Harris 1991, Proposition 1.5.
  5. ^ Serre 1977, Theorem 1.
  6. ^ Fulton & Harris 1991, Corollary 1.6.
  7. ^ Serre 1977, Theorem 2.
  8. ^ It follows that every module over is a semisimple module.
  9. ^ The converse statement also holds: if the characteristic of the field divides the order of the group (the modular case), then the group algebra is not semisimple.
  10. ^ The number of the summands can be computed, and turns out to be equal to the number of the conjugacy classes of the group.
  11. ^ One must be careful, since a representation may decompose differently over different fields: a representation may be irreducible over the real numbers but not over the complex numbers.
  12. ^ Serre 1977, Exercise 6.1.

References

Read other articles:

Daniel Akaka Senator Amerika Serikat dari HawaiiMasa jabatan16 Mei 1990 – 3 Januari 2013 PendahuluSpark MatsunagaPenggantiMazie HironoAnggota Dewan Perwakilan Rakyat A.S.dari dapil ke-2 HawaiiMasa jabatan3 Januari 1977 – 16 Mei 1990 PendahuluPatsy MinkPenggantiPatsy Mink Informasi pribadiLahirDaniel Kahikina Akaka(1924-09-11)11 September 1924Honolulu, Teritorial Hawaii, Amerika SerikatMeninggal6 April 2018(2018-04-06) (umur 93)Honolulu, Hawaii, Amerika S...

 

För andra betydelser, se Åland (olika betydelser). Åland Landskap Flagga Landskapsvapen Land  Finland Historiska landskap Åland Historiska län Ålands län Huvudort Mariehamn  - koordinater 60°7′N 19°54′Ö / 60.117°N 19.900°Ö / 60.117; 19.900 Högsta punkt Orrdalsklint Area 13 324,29 km² (2016-01-01)[1]  - land 1 553,30 km² (2016-01-01)[1]  - vatten 29,32 km² (2016-01-01)[1] Fol...

 

Dalam nama Korea ini, nama keluarganya adalah Kim. Kim Woo-jinKim pada Kejuaraan Panahan Dunia 2015Informasi pribadiNama asli김우진Tim nasional Korea SelatanLahir20 Juni 1992 (umur 31)Okcheon, Chungcheong UtaraPendidikanUniversitas Juseong, SMA Pendidikan Jasmani Chungbuk, SMP Iwon, SD IwonTinggi5 kaki 11 ini[1]Berat198 pon (90 kg)[1] OlahragaOlahragaPanahanKlubKota Cheongju Rekam medali Panahan putra Mewakili  Korea Selatan Permainan Olimpiade...

Astrakhan kotakota besarwilayah administratifpelabuhan Астрахань (ru) flags of Astrakhan (en) Tempat Negara berdaulatRusiaOblast di RusiaOblast AstrakhanUrban okrug in Russia (en)Astrakhan Urban Okrug (en) Ibu kota dariOblast Astrakhan Astrakhan Urban Okrug (en) Astrakhan Governorate (en) Astrakhan Okrug (en) (1928–1930)Astrakhan Okrug (en) (1937–1943)Caucasus Viceroyalty (en) (1790–1796) NegaraRusia Pembagian administratifLeninsky District (en) Kirovsky City Distri...

 

1985 novel by Dominique Lapierre For the film, see City of Joy (1992 film). For the documentary, see City of Joy (2016 film). City of Joy AuthorDominique LapierreOriginal titleLa cité de la joieTranslatorKathryn SpinkCountryFranceLanguageFrenchPublisherArrowPublication date1985Published in English1985Pages544ISBN0-09-914091-8 City of Joy (French: La Cité de la joie) is a 1985 novel by Dominique Lapierre. It was adapted as a film by Roland Joffé in 1992. Calcutta is nicknamed the ...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Liu Xiu beralih ke halaman ini. Untuk astronom dan cendekiawan, lihat Liu Xin. Guangwu beralih ke halaman ini. Untuk bekas kota di Shanxi pada masa sekarang, lihat Kabupaten Guangwu. Potret Kaisarr Guangwu dari Sancai Tuhui Kaisar Guangwu (nama lahir Liu Xiu; 15 Januari 5 SM – 29 Maret 57),[1] nama kehormatan Wenshu, adalah seorang kaisar dinasti Han Tiongkok, perestorasi dinasti pada 25 M dan kemudian pendiri Han Akhir atau Han Timur (Dinasti Han yang direstorasi). Ia mula-mula mem...

 

326

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 326 – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) Calendar year Millennium: 1st millennium Centuries: 3rd century 4th century 5th century Decades: 300s 310s 320s 330s 340s Yea...

 

Baserunning mistake in a 1908 baseball game Fred Merkle Merkle's Boner refers to the notorious base-running mistake committed by rookie Fred Merkle of the New York Giants in a game against the Chicago Cubs on September 23, 1908. Merkle's failure to advance to second base on what should have been a game-winning hit led instead to a force play at second and a tied game. The Cubs later won the makeup game, which proved decisive as they beat the Giants by one game to win the National League (NL) ...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

English cricketer Arthur CarrPersonal informationFull nameArthur William CarrBorn(1893-05-21)21 May 1893Mickleham, Surrey, EnglandDied7 February 1963(1963-02-07) (aged 69)West Witton, Yorkshire, EnglandBattingRight-handedBowlingRight arm mediumInternational information National sideEnglandTest debut23 December 1922 v South AfricaLast Test17 August 1929 v South Africa Career statistics Competition Test First-class Matches 11 468 Runs scored 237 21,051 Batting aver...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

French supermarket chain You can help expand this article with text translated from the corresponding article in French. (March 2022) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text ...

 

For related races, see 2024 United States elections. 2024 United States Senate elections ← 2022 November 5, 2024 2026 → 34 of the 100 seats in the United States Senate51[a] seats needed for a majority   Leader Chuck Schumer Mitch McConnell(retiring as leader) Party Democratic Republican Leader since January 3, 2017 January 3, 2007 Leader's seat New York Kentucky Current seats 47[b] 49 Seats needed 2 (or 1 + VP)[c] Seats u...

 

33rd Lieutenant Governor of Montana For the American musician and writer, see John Bohlinger (musician). John Bohlinger33rd Lieutenant Governor of MontanaIn officeJanuary 3, 2005 – January 7, 2013GovernorBrian SchweitzerPreceded byKarl OhsSucceeded byJohn WalshMember of the Montana Senatefrom the 7th districtIn officeJanuary 4, 1999 – December 16, 2004Preceded bySharon EstradaSucceeded byJim ElliottMember of the Montana House of Representativesfrom the 14th d...

約穆省省坐标:7°34′08″N 9°15′22″W / 7.569°N 9.256°W / 7.569; -9.256國家 几内亚大區恩澤雷科雷大區首府約穆面积 • 总计2,000 平方英里(6,000 平方公里)人口 • 總計87,000人时区畿內亞標準時間(UTC+0) 約穆省是西非國家畿內亞的33個省之一,位於該國東南部,由恩澤雷科雷大區負責管轄,首府設於約穆,北臨馬桑塔省和恩澤雷科雷...

 

World RallyChampionship   Current season 2024 World Rally Championship 2024 WRC2 Championship 2024 WRC3 Championship 2024 Junior WRC Championship Support categories Current: WRC2 WRC3 Junior WRC Former: PWRC SWRC FIA 2-Litre Current car classes Rally1 Rally2 Rally3 Rally4 Rally5 Related lists Drivers Champions Female Numbers Co-drivers Champions Manufacturers Champions Seasons Event winners Fatal accidents People Rallies Records Special stage Power Stage Video games Official games vte T...

 

Infektionen der COVID-19-Pandemie in Nauru sind bislang nicht bekannt geworden. Der Inselstaat Nauru ist damit einer der vier Staaten auf der Erde, in denen offiziell keine COVID-19-Infizierten nachgewiesen wurden (Stand 1. November 2021).[1] Inhaltsverzeichnis 1 Hintergrund 2 Insellage 3 Verlauf und Maßnahmen 3.1 Reaktionen und Maßnahmen im Land 3.2 Reisebeschränkungen 4 Statistik 5 Einzelnachweise Hintergrund Die COVID-19-Pandemie tritt als Teil der weltweiten COVID-19-Pandemie a...

1941 film by Lew Landers Ridin' on a RainbowTheatrical release posterDirected byLew LandersScreenplay by Bradford Ropes Doris Malloy Story byBradford RopesProduced byHarry GreyStarring Gene Autry Smiley Burnette Mary Lee CinematographyWilliam NobelsEdited byTony MartinelliMusic byRaoul Kraushaar (supervisor)ProductioncompanyRepublic PicturesDistributed byRepublic PicturesRelease date January 24, 1941 (1941-01-24) (U.S.) Running time75 minutes[1]CountryUnited StatesL...

 

Autoritratto, 1780 ca. John Hoppner (Londra, 4 aprile 1758 – Londra, 23 gennaio 1810) è stato un pittore inglese, celebre ritrattista, influenzato principalmente da Joshua Reynolds, ricordato soprattutto per l'uso di colori brillanti. Indice 1 Biografia 1.1 Opere 2 Bibliografia 3 Altri progetti 4 Collegamenti esterni Biografia Ritratto delle sorelle Frankland, 1795 Nel 1775 era allievo della Royal Academy of Arts e la sua prima esposizione risale al 1780. Nei suoi primi ritratti, ad esempi...