List of electromagnetism equations
This article summarizes equations in the theory of electromagnetism .
Definitions
Lorentz force on a charged particle (of charge q ) in motion (velocity v ), used as the definition of the E field and B field .
Here subscripts e and m are used to differ between electric and magnetic charges . The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by qm (Wb) = μ 0 qm (Am).
Initial quantities
Electric quantities
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂ , d is the dipole moment between two point charges, the volume density of these is the polarization density P . Position vector r is a point to calculate the electric field; r′ is a point in the charged object.
Contrary to the strong analogy between (classical) gravitation and electrostatics , there are no "centre of charge" or "centre of electrostatic attraction" analogues.[citation needed ]
Electric transport
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Linear, surface, volumetric charge density
λe for Linear, σe for surface, ρe for volume.
q
e
=
∫ ∫ -->
λ λ -->
e
d
ℓ ℓ -->
{\displaystyle q_{e}=\int \lambda _{e}\mathrm {d} \ell }
q
e
=
∬ ∬ -->
σ σ -->
e
d
S
{\displaystyle q_{e}=\iint \sigma _{e}\mathrm {d} S}
q
e
=
∭ ∭ -->
ρ ρ -->
e
d
V
{\displaystyle q_{e}=\iiint \rho _{e}\mathrm {d} V}
C m−n , n = 1, 2, 3
[I][T][L]−n
Capacitance
C
C
=
d
q
d
V
{\displaystyle C={\mathrm {d} q \over \mathrm {d} V}\,\!}
V = voltage, not volume.
F = C V−1
[I]2 [T]4 [L]−2 [M]−1
Electric current
I
I
=
d
q
d
t
{\displaystyle I={\mathrm {d} q \over \mathrm {d} t}\,\!}
A
[I]
Electric current density
J
I
=
J
⋅ ⋅ -->
d
S
{\displaystyle I=\mathbf {J} \cdot \mathrm {d} \mathbf {S} }
A m−2
[I][L]−2
Displacement current density
J d
J
d
=
∂ ∂ -->
D
∂ ∂ -->
t
=
ε ε -->
0
(
∂ ∂ -->
E
∂ ∂ -->
t
)
{\displaystyle \mathbf {J} _{\mathrm {d} }={\partial \mathbf {D} \over \partial t}=\varepsilon _{0}\left({\partial \mathbf {E} \over \partial t}\right)\,\!}
A m−2
[I][L]−2
Convection current density
J c
J
c
=
ρ ρ -->
v
{\displaystyle \mathbf {J} _{\mathrm {c} }=\rho \mathbf {v} \,\!}
A m−2
[I][L]−2
Electric fields
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Electric field , field strength, flux density, potential gradient
E
E
=
F
q
{\displaystyle \mathbf {E} ={\mathbf {F} \over q}\,\!}
N C−1 = V m−1
[M][L][T]−3 [I]−1
Electric flux
ΦE
Φ Φ -->
E
=
∫ ∫ -->
S
E
⋅ ⋅ -->
d
A
{\displaystyle \Phi _{E}=\int _{S}\mathbf {E} \cdot \mathrm {d} \mathbf {A} \,\!}
N m2 C−1
[M][L]3 [T]−3 [I]−1
Absolute permittivity ;
ε
ε ε -->
=
ε ε -->
r
ε ε -->
0
{\displaystyle \varepsilon =\varepsilon _{r}\varepsilon _{0}\,\!}
F m−1
[I]2 [T]4 [M]−1 [L]−3
Electric dipole moment
p
p
=
q
a
{\displaystyle \mathbf {p} =q\mathbf {a} \,\!}
a = charge separation
directed from -ve to +ve charge
C m
[I][T][L]
Electric Polarization, polarization density
P
P
=
d
⟨ ⟨ -->
p
⟩ ⟩ -->
d
V
{\displaystyle \mathbf {P} ={\mathrm {d} \langle \mathbf {p} \rangle \over \mathrm {d} V}\,\!}
C m−2
[I][T][L]−2
Electric displacement field , flux density
D
D
=
ε ε -->
E
=
ε ε -->
0
E
+
P
{\displaystyle \mathbf {D} =\varepsilon \mathbf {E} =\varepsilon _{0}\mathbf {E} +\mathbf {P} \,}
C m−2
[I][T][L]−2
Electric displacement flux
ΦD
Φ Φ -->
D
=
∫ ∫ -->
S
D
⋅ ⋅ -->
d
A
{\displaystyle \Phi _{D}=\int _{S}\mathbf {D} \cdot \mathrm {d} \mathbf {A} \,\!}
C
[I][T]
Absolute electric potential , EM scalar potential relative to point
r
0
{\displaystyle r_{0}\,\!}
Theoretical:
r
0
=
∞ ∞ -->
{\displaystyle r_{0}=\infty \,\!}
Practical:
r
0
=
R
e
a
r
t
h
{\displaystyle r_{0}=R_{\mathrm {earth} }\,\!}
(Earth's radius)
φ ,V
V
=
− − -->
W
∞ ∞ -->
r
q
=
− − -->
1
q
∫ ∫ -->
∞ ∞ -->
r
F
⋅ ⋅ -->
d
r
=
− − -->
∫ ∫ -->
r
1
r
2
E
⋅ ⋅ -->
d
r
{\displaystyle V=-{\frac {W_{\infty r}}{q}}=-{\frac {1}{q}}\int _{\infty }^{r}\mathbf {F} \cdot \mathrm {d} \mathbf {r} =-\int _{r_{1}}^{r_{2}}\mathbf {E} \cdot \mathrm {d} \mathbf {r} \,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
Voltage , Electric potential difference
Δφ ,ΔV
Δ Δ -->
V
=
− − -->
Δ Δ -->
W
q
=
− − -->
1
q
∫ ∫ -->
r
1
r
2
F
⋅ ⋅ -->
d
r
=
− − -->
∫ ∫ -->
r
1
r
2
E
⋅ ⋅ -->
d
r
{\displaystyle \Delta V=-{\frac {\Delta W}{q}}=-{\frac {1}{q}}\int _{r_{1}}^{r_{2}}\mathbf {F} \cdot \mathrm {d} \mathbf {r} =-\int _{r_{1}}^{r_{2}}\mathbf {E} \cdot \mathrm {d} \mathbf {r} \,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
Magnetic quantities
Magnetic transport
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Linear, surface, volumetric pole density
λm for Linear, σm for surface, ρm for volume.
q
m
=
∫ ∫ -->
λ λ -->
m
d
ℓ ℓ -->
{\displaystyle q_{m}=\int \lambda _{m}\mathrm {d} \ell }
q
m
=
∬ ∬ -->
σ σ -->
m
d
S
{\displaystyle q_{m}=\iint \sigma _{m}\mathrm {d} S}
q
m
=
∭ ∭ -->
ρ ρ -->
m
d
V
{\displaystyle q_{m}=\iiint \rho _{m}\mathrm {d} V}
Wb m−n
A m(−n + 1) ,
n = 1, 2, 3
[L]2 [M][T]−2 [I]−1 (Wb)
[I][L] (Am)
Monopole current
Im
I
m
=
d
q
m
d
t
{\displaystyle I_{m}={\mathrm {d} q_{m} \over \mathrm {dt} }\,\!}
Wb s−1
A m s−1
[L]2 [M][T]−3 [I]−1 (Wb)
[I][L][T]−1 (Am)
Monopole current density
J m
I
=
∬ ∬ -->
J
m
⋅ ⋅ -->
d
A
{\displaystyle I=\iint \mathbf {J} _{\mathrm {m} }\cdot \mathrm {d} \mathbf {A} }
Wb s−1 m−2
A m−1 s−1
[M][T]−3 [I]−1 (Wb)
[I][L]−1 [T]−1 (Am)
Magnetic fields
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Magnetic field , field strength, flux density, induction field
B
F
=
q
e
(
v
× × -->
B
)
{\displaystyle \mathbf {F} =q_{e}\left(\mathbf {v} \times \mathbf {B} \right)\,\!}
T = N A−1 m−1 = Wb m−2
[M][T]−2 [I]−1
Magnetic potential , EM vector potential
A
B
=
∇ ∇ -->
× × -->
A
{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }
T m = N A−1 = Wb m3
[M][L][T]−2 [I]−1
Magnetic flux
ΦB
Φ Φ -->
B
=
∫ ∫ -->
S
B
⋅ ⋅ -->
d
A
{\displaystyle \Phi _{B}=\int _{S}\mathbf {B} \cdot \mathrm {d} \mathbf {A} \,\!}
Wb = T m2
[L]2 [M][T]−2 [I]−1
Magnetic permeability
μ μ -->
{\displaystyle \mu \,\!}
μ μ -->
=
μ μ -->
r
μ μ -->
0
{\displaystyle \mu \ =\mu _{r}\,\mu _{0}\,\!}
V·s·A−1 ·m−1 = N·A−2 = T·m·A−1 = Wb·A−1 ·m−1
[M][L][T]−2 [I]−2
Magnetic moment , magnetic dipole moment
m , μB , Π
Two definitions are possible:
using pole strengths,
m
=
q
m
a
{\displaystyle \mathbf {m} =q_{m}\mathbf {a} \,\!}
using currents:
m
=
N
I
A
n
^ ^ -->
{\displaystyle \mathbf {m} =NIA\mathbf {\hat {n}} \,\!}
a = pole separation
N is the number of turns of conductor
A m2
[I][L]2
Magnetization
M
M
=
d
⟨ ⟨ -->
m
⟩ ⟩ -->
d
V
{\displaystyle \mathbf {M} ={\mathrm {d} \langle \mathbf {m} \rangle \over \mathrm {d} V}\,\!}
A m−1
[I] [L]−1
Magnetic field intensity, (AKA field strength)
H
Two definitions are possible:
most common:
B
=
μ μ -->
H
=
μ μ -->
0
(
H
+
M
)
{\displaystyle \mathbf {B} =\mu \mathbf {H} =\mu _{0}\left(\mathbf {H} +\mathbf {M} \right)\,}
using pole strengths,[ 1]
H
=
F
q
m
{\displaystyle \mathbf {H} ={\mathbf {F} \over q_{m}}\,}
A m−1
[I] [L]−1
Intensity of magnetization , magnetic polarization
I , J
I
=
μ μ -->
0
M
{\displaystyle \mathbf {I} =\mu _{0}\mathbf {M} \,\!}
T = N A−1 m−1 = Wb m−2
[M][T]−2 [I]−1
Self Inductance
L
Two equivalent definitions are possible:
L
=
N
(
d
Φ Φ -->
d
I
)
{\displaystyle L=N\left({\mathrm {d} \Phi \over \mathrm {d} I}\right)\,\!}
L
(
d
I
d
t
)
=
− − -->
N
V
{\displaystyle L\left({\mathrm {d} I \over \mathrm {d} t}\right)=-NV\,\!}
H = Wb A−1
[L]2 [M] [T]−2 [I]−2
Mutual inductance
M
Again two equivalent definitions are possible:
M
1
=
N
(
d
Φ Φ -->
2
d
I
1
)
{\displaystyle M_{1}=N\left({\mathrm {d} \Phi _{2} \over \mathrm {d} I_{1}}\right)\,\!}
M
(
d
I
2
d
t
)
=
− − -->
N
V
1
{\displaystyle M\left({\mathrm {d} I_{2} \over \mathrm {d} t}\right)=-NV_{1}\,\!}
1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through each other. They can be interchanged for the required conductor/inductor;
M
2
=
N
(
d
Φ Φ -->
1
d
I
2
)
{\displaystyle M_{2}=N\left({\mathrm {d} \Phi _{1} \over \mathrm {d} I_{2}}\right)\,\!}
M
(
d
I
1
d
t
)
=
− − -->
N
V
2
{\displaystyle M\left({\mathrm {d} I_{1} \over \mathrm {d} t}\right)=-NV_{2}\,\!}
H = Wb A−1
[L]2 [M] [T]−2 [I]−2
Gyromagnetic ratio (for charged particles in a magnetic field)
γ
ω ω -->
=
γ γ -->
B
{\displaystyle \omega =\gamma B\,\!}
Hz T−1
[M]−1 [T][I]
Electric circuits
DC circuits, general definitions
AC circuits
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Resistive load voltage
VR
V
R
=
I
R
R
{\displaystyle V_{R}=I_{R}R\,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
Capacitive load voltage
VC
V
C
=
I
C
X
C
{\displaystyle V_{C}=I_{C}X_{C}\,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
Inductive load voltage
VL
V
L
=
I
L
X
L
{\displaystyle V_{L}=I_{L}X_{L}\,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
Capacitive reactance
XC
X
C
=
1
ω ω -->
d
C
{\displaystyle X_{C}={\frac {1}{\omega _{\mathrm {d} }C}}\,\!}
Ω−1 m−1
[I]2 [T]3 [M]−2 [L]−2
Inductive reactance
XL
X
L
=
ω ω -->
d
L
{\displaystyle X_{L}=\omega _{d}L\,\!}
Ω−1 m−1
[I]2 [T]3 [M]−2 [L]−2
AC electrical impedance
Z
V
=
I
Z
{\displaystyle V=IZ\,\!}
Z
=
R
2
+
(
X
L
− − -->
X
C
)
2
{\displaystyle Z={\sqrt {R^{2}+\left(X_{L}-X_{C}\right)^{2}}}\,\!}
Ω−1 m−1
[I]2 [T]3 [M]−2 [L]−2
Phase constant
δ, φ
tan
-->
ϕ ϕ -->
=
X
L
− − -->
X
C
R
{\displaystyle \tan \phi ={\frac {X_{L}-X_{C}}{R}}\,\!}
dimensionless
dimensionless
AC peak current
I 0
I
0
=
I
r
m
s
2
{\displaystyle I_{0}=I_{\mathrm {rms} }{\sqrt {2}}\,\!}
A
[I]
AC root mean square current
I rms
I
r
m
s
=
1
T
∫ ∫ -->
0
T
[
I
(
t
)
]
2
d
t
{\displaystyle I_{\mathrm {rms} }={\sqrt {{\frac {1}{T}}\int _{0}^{T}\left[I\left(t\right)\right]^{2}\mathrm {d} t}}\,\!}
A
[I]
AC peak voltage
V 0
V
0
=
V
r
m
s
2
{\displaystyle V_{0}=V_{\mathrm {rms} }{\sqrt {2}}\,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
AC root mean square voltage
V rms
V
r
m
s
=
1
T
∫ ∫ -->
0
T
[
V
(
t
)
]
2
d
t
{\displaystyle V_{\mathrm {rms} }={\sqrt {{\frac {1}{T}}\int _{0}^{T}\left[V\left(t\right)\right]^{2}\mathrm {d} t}}\,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
AC emf, root mean square
E
r
m
s
,
⟨ ⟨ -->
E
⟩ ⟩ -->
{\displaystyle {\mathcal {E}}_{\mathrm {rms} },{\sqrt {\langle {\mathcal {E}}\rangle }}\,\!}
E
r
m
s
=
E
m
/
2
{\displaystyle {\mathcal {E}}_{\mathrm {rms} }={\mathcal {E}}_{\mathrm {m} }/{\sqrt {2}}\,\!}
V = J C−1
[M] [L]2 [T]−3 [I]−1
AC average power
⟨ ⟨ -->
P
⟩ ⟩ -->
{\displaystyle \langle P\rangle \,\!}
⟨ ⟨ -->
P
⟩ ⟩ -->
=
E
I
r
m
s
cos
-->
ϕ ϕ -->
{\displaystyle \langle P\rangle ={\mathcal {E}}I_{\mathrm {rms} }\cos \phi \,\!}
W = J s−1
[M] [L]2 [T]−3
Capacitive time constant
τC
τ τ -->
C
=
R
C
{\displaystyle \tau _{C}=RC\,\!}
s
[T]
Inductive time constant
τL
τ τ -->
L
=
L
R
{\displaystyle \tau _{L}={L \over R}\,\!}
s
[T]
Magnetic circuits
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Magnetomotive force , mmf
F ,
F
,
M
{\displaystyle {\mathcal {F}},{\mathcal {M}}}
M
=
N
I
{\displaystyle {\mathcal {M}}=NI}
N = number of turns of conductor
A
[I]
Electromagnetism
Electric fields
Summary of electrostatic relations between electric potential, electric field and charge density. Here,
r
=
x
− − -->
x
′
{\displaystyle \mathbf {r} =\mathbf {x} -\mathbf {x'} }
.
General Classical Equations
Magnetic fields and moments
Summary of magnetostatic relations between magnetic vector potential, magnetic field and current density. Here,
r
=
x
− − -->
x
′
{\displaystyle \mathbf {r} =\mathbf {x} -\mathbf {x'} }
.
General classical equations
Electric circuits and electronics
Below N = number of conductors or circuit components. Subscript net refers to the equivalent and resultant property value.
Physical situation
Nomenclature
Series
Parallel
Resistors and conductors
Ri = resistance of resistor or conductor i
Gi = conductance of resistor or conductor i
R
n
e
t
=
∑ ∑ -->
i
=
1
N
R
i
{\displaystyle R_{\mathrm {net} }=\sum _{i=1}^{N}R_{i}\,\!}
1
G
n
e
t
=
∑ ∑ -->
i
=
1
N
1
G
i
{\displaystyle {1 \over G_{\mathrm {net} }}=\sum _{i=1}^{N}{1 \over G_{i}}\,\!}
1
R
n
e
t
=
∑ ∑ -->
i
=
1
N
1
R
i
{\displaystyle {1 \over R_{\mathrm {net} }}=\sum _{i=1}^{N}{1 \over R_{i}}\,\!}
G
n
e
t
=
∑ ∑ -->
i
=
1
N
G
i
{\displaystyle G_{\mathrm {net} }=\sum _{i=1}^{N}G_{i}\,\!}
Charge, capacitors, currents
Ci = capacitance of capacitor i
qi = charge of charge carrier i
q
n
e
t
=
∑ ∑ -->
i
=
1
N
q
i
{\displaystyle q_{\mathrm {net} }=\sum _{i=1}^{N}q_{i}\,\!}
1
C
n
e
t
=
∑ ∑ -->
i
=
1
N
1
C
i
{\displaystyle {1 \over C_{\mathrm {net} }}=\sum _{i=1}^{N}{1 \over C_{i}}\,\!}
I
n
e
t
=
I
i
{\displaystyle I_{\mathrm {net} }=I_{i}\,\!}
q
n
e
t
=
∑ ∑ -->
i
=
1
N
q
i
{\displaystyle q_{\mathrm {net} }=\sum _{i=1}^{N}q_{i}\,\!}
C
n
e
t
=
∑ ∑ -->
i
=
1
N
C
i
{\displaystyle C_{\mathrm {net} }=\sum _{i=1}^{N}C_{i}\,\!}
I
n
e
t
=
∑ ∑ -->
i
=
1
N
I
i
{\displaystyle I_{\mathrm {net} }=\sum _{i=1}^{N}I_{i}\,\!}
Inductors
Li = self-inductance of inductor i
Lij = self-inductance element ij of L matrix
Mij = mutual inductance between inductors i and j
L
n
e
t
=
∑ ∑ -->
i
=
1
N
L
i
{\displaystyle L_{\mathrm {net} }=\sum _{i=1}^{N}L_{i}\,\!}
1
L
n
e
t
=
∑ ∑ -->
i
=
1
N
1
L
i
{\displaystyle {1 \over L_{\mathrm {net} }}=\sum _{i=1}^{N}{1 \over L_{i}}\,\!}
V
i
=
∑ ∑ -->
j
=
1
N
L
i
j
d
I
j
d
t
{\displaystyle V_{i}=\sum _{j=1}^{N}L_{ij}{\frac {\mathrm {d} I_{j}}{\mathrm {d} t}}\,\!}
Circuit
DC Circuit equations
AC Circuit equations
Series circuit equations
RC circuits
Circuit equation
R
d
q
d
t
+
q
C
=
E
{\displaystyle R{\mathrm {d} q \over \mathrm {d} t}+{q \over C}={\mathcal {E}}\,\!}
Capacitor charge
q
=
C
E
(
1
− − -->
e
− − -->
t
/
R
C
)
{\displaystyle q=C{\mathcal {E}}\left(1-e^{-t/RC}\right)\,\!}
Capacitor discharge
q
=
C
E
e
− − -->
t
/
R
C
{\displaystyle q=C{\mathcal {E}}e^{-t/RC}\,\!}
RL circuits
Circuit equation
L
d
I
d
t
+
R
I
=
E
{\displaystyle L{\mathrm {d} I \over \mathrm {d} t}+RI={\mathcal {E}}\,\!}
Inductor current rise
I
=
E
R
(
1
− − -->
e
− − -->
R
t
/
L
)
{\displaystyle I={\frac {\mathcal {E}}{R}}\left(1-e^{-Rt/L}\right)\,\!}
Inductor current fall
I
=
E
R
e
− − -->
t
/
τ τ -->
L
=
I
0
e
− − -->
R
t
/
L
{\displaystyle I={\frac {\mathcal {E}}{R}}e^{-t/\tau _{L}}=I_{0}e^{-Rt/L}\,\!}
LC circuits
Circuit equation
L
d
2
q
d
t
2
+
q
C
=
E
{\displaystyle L{\mathrm {d} ^{2}q \over \mathrm {d} t^{2}}+{q \over C}={\mathcal {E}}\,\!}
Circuit equation
L
d
2
q
d
t
2
+
q
C
=
E
sin
-->
(
ω ω -->
0
t
+
ϕ ϕ -->
)
{\displaystyle L{\mathrm {d} ^{2}q \over \mathrm {d} t^{2}}+{q \over C}={\mathcal {E}}\sin \left(\omega _{0}t+\phi \right)\,\!}
Circuit resonant frequency
ω ω -->
r
e
s
=
1
L
C
{\displaystyle \omega _{\mathrm {res} }={1 \over {\sqrt {LC}}}\,\!}
Circuit charge
q
=
q
0
cos
-->
(
ω ω -->
t
+
ϕ ϕ -->
)
{\displaystyle q=q_{0}\cos(\omega t+\phi )\,\!}
Circuit current
I
=
− − -->
ω ω -->
q
0
sin
-->
(
ω ω -->
t
+
ϕ ϕ -->
)
{\displaystyle I=-\omega q_{0}\sin(\omega t+\phi )\,\!}
Circuit electrical potential energy
U
E
=
q
2
2
C
=
q
0
2
cos
2
-->
(
ω ω -->
t
+
ϕ ϕ -->
)
2
C
{\displaystyle U_{E}={q^{2} \over 2C}={q_{0}^{2}\cos ^{2}(\omega t+\phi ) \over 2C}\,\!}
Circuit magnetic potential energy
U
B
=
q
0
2
sin
2
-->
(
ω ω -->
t
+
ϕ ϕ -->
)
2
C
{\displaystyle U_{B}={q_{0}^{2}\sin ^{2}(\omega t+\phi ) \over 2C}\,\!}
RLC circuits
Circuit equation
L
d
2
q
d
t
2
+
R
d
q
d
t
+
q
C
=
E
{\displaystyle L{\mathrm {d} ^{2}q \over \mathrm {d} t^{2}}+R{\mathrm {d} q \over \mathrm {d} t}+{q \over C}={\mathcal {E}}\,\!}
Circuit equation
L
d
2
q
d
t
2
+
R
d
q
d
t
+
q
C
=
E
sin
-->
(
ω ω -->
0
t
+
ϕ ϕ -->
)
{\displaystyle L{\mathrm {d} ^{2}q \over \mathrm {d} t^{2}}+R{\mathrm {d} q \over \mathrm {d} t}+{q \over C}={\mathcal {E}}\sin \left(\omega _{0}t+\phi \right)\,\!}
Circuit charge
q
=
q
0
e
T
− − -->
R
t
/
2
L
cos
-->
(
ω ω -->
′
t
+
ϕ ϕ -->
)
{\displaystyle q=q_{0}eT^{-Rt/2L}\cos(\omega 't+\phi )\,\!}
See also
^ M. Mansfield; C. O'Sullivan (2011). Understanding Physics (2nd ed.). John Wiley & Sons. ISBN 978-0-470-74637-0 .
Sources
Further reading