Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. iPadThe third generation iPadPengembangApple Inc.PembuatFoxconnKeluarga produkiPadJenisTablet computerTanggal rilis 16 Maret 2012 (2012-03-16) SingaporeFranceHong KongUnited KingdomGermanySwitzerlandJapanCanadaUnited StatesAustralia 23 Maret 2012&...
陆军第十四集团军炮兵旅陆军旗存在時期1950年 - 2017年國家或地區 中国效忠於 中国 中国共产党部門 中国人民解放军陆军種類炮兵功能火力支援規模约90门火炮直屬南部战区陆军參與戰役1979年中越战争 中越边境冲突 老山战役 成都军区对越轮战 紀念日10月25日 陆军第十四集团军炮兵旅(英語:Artillery Brigade, 14th Army),是曾经中国人民解放军陆军第十四集团军下属...
Halaman dari Codex Argenteus yang memuat Alkitab Wulfila. Bagian dari seriAlkitab Kanon Alkitabdan kitab-kitabnya Tanakh(Taurat · Nevi'im · Ketuvim)Kanon Alkitab Kristen · Alkitab IbraniPerjanjian Lama (PL) · Perjanjian Baru (PB) Deuterokanonika · Antilegomena Bab dan ayat dalam Alkitab Apokrifa:(Yahudi · PL · PB) Perkembangan dan Penulisan Penanggalan Kanon Yahudi Perjanjian Lama Kanon Perjanjian Baru Surat-surat Pau...
Castello del BuonconsiglioUbicazioneStato Italia RegioneTrentino-Alto Adige CittàTrento IndirizzoVia Cardinale Bernardo Clesio 5, 38122 Trento e Via Bernardo Clesio, 5 Coordinate46°04′17.7″N 11°07′37.8″E / 46.071583°N 11.127167°E46.071583; 11.127167Coordinate: 46°04′17.7″N 11°07′37.8″E / 46.071583°N 11.127167°E46.071583; 11.127167 Informazioni generaliTipoCastello StileGotico, Rinascimentale CostruzioneXIII secolo-XVIII secolo Cond...
For the film, see Secret World Live (film). For the Tears for Fears album, see Secret World Live in Paris. 1994 live album by Peter GabrielSecret World LiveLive album by Peter GabrielReleased30 August 1994 (1994-08-30)Recorded16–17 November 1993VenuePalasport Nuovo, Modena, ItalyGenre Art rock worldbeat Length99:45Label Geffen (US and Canada) Real World/Virgin Producer Peter Gabriel Peter Walsh Peter Gabriel chronology Peter Gabriel Revisited(1992) Secret World Live(1...
Belgian professional football club This article is about the men's football club based in Belgium. For the women's team, see Oud-Heverlee Leuven (women). Football clubOud-Heverlee LeuvenFull nameOud-Heverlee LeuvenShort nameOHL, OH LeuvenFounded2002; 22 years ago (2002)GroundKing Power At Den DreefCapacity10,020[1]OwnerKing PowerChairmanAiyawatt SrivaddhanaprabhaManagerÓscar GarcíaLeagueBelgian Pro League2022–23Belgian Pro League, 10th of 18WebsiteClub website Ho...
2024 Rwandan general election Presidential election ← 2017 15 July 2024[1] Nominee Paul Kagame Frank Habineza[2] Party RPF DGPR President before election Paul Kagame RPF Elected President TBD Politics of Rwanda Constitution Human rights International Criminal Tribunal Government President Paul Kagame Prime Minister Édouard Ngirente Cabinet Parliament Senate President: Bernard Makuza Chamber of Deputies Speaker: Donatille Mukabalisa Judiciary Supreme Court A...
2nd election held after the Union of Great Britain and Ireland 1806 United Kingdom general election ← 1802 29 October – 17 December 1806 (1806-10-29 – 1806-12-17) 1807 → ← outgoing memberselected members →All 658 seats in the House of Commons330 seats needed for a majority First party Second party Leader Lord Grenville Duke of Portland Party Whig Pittite Leader since 11 February 1806 — Seats...
US Army military base The Presidio of Monterrey. Volume II, plate V from: A Voyage of Discovery to the North Pacific Ocean and Round the World by Captain George Vancouver Civil Affairs Staging Area (CASA) officers receive Chinese language instruction at the Presidio of Monterey in the Spring of 1945. Senior Army / Navy Civil Affairs Staging Area officers at the Presidio of Monterey in the Spring of 1945. Presidio of Monterey in 2005. The Presidio of Monterey (POM), located in Monterey, Califo...
Voce principale: Sito espositivo dell'Expo 2015. Il Parco della Biodiversità è stata una delle aree tematiche all'interno del sito espositivo di Expo 2015. L'area fu creata in collaborazione con BolognaFiere e il Ministero delle politiche agricole alimentari e forestali, del Ministero dell'Ambiente e della Tutela del Territorio e del Mare e di FederBio. Si estendeva su una superficie di 8.500 m² e al suo interno hanno sede anche un teatro e due padiglioni. Il parco si divideva in tre...
International television channel owned by the BBC This article is about the international variant of BBC First. For localised versions, see BBC First (Australian TV channel), BBC First (Dutch TV channel), and BBC First (Canadian TV channel). Not to be confused with BBC One. Television channel BBC FirstBBC First logo (2022–present)Broadcast areaAustraliaNetherlandsBelgiumAfricaSingaporeMalaysiaPolandMoldovaRomaniaTurkeyTurkish Republic of Northern CyprusCanadaMiddle East & North AfricaPr...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) نظام فالانكس (CIWS) الصاروخي Phalanx CIWS إطلاق نظام فالانكس (CIWS) الصاروخي من حاملة الطائرات الأمريكيةإطلاق نظام ...
Unlicensed event in Glasgow, Scotland Willy's Chocolate ExperienceOne of the AI-generated advertisements used for the event, with uncorrected spelling errors and nonsensical wordsBox Hub WarehouseDate24 February 2024 (2024-02-24)VenueBox Hub WarehouseLocationGlasgow, ScotlandCoordinates55°52′21″N 4°20′26″W / 55.87250°N 4.34056°W / 55.87250; -4.34056ThemeCharlie and the Chocolate FactoryOrganised byHouse of IlluminatiWebsitewillyschocolateexpe...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) «مسجد همايون إحداثيات 27°10′57″N 78°02′22″E / 27.182497°N 78.039401°E / 27.182497; 78.039401 معلومات عامة القرية أ...
此條目需要擴充。 (2007年9月26日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 世界地圖是指地球表面的地圖,一般畫有經緯線、地名等資料,使用者可以藉經緯線在世界地圖上找出各地方,也可以知道南極、北極的位置。有多種方法把地球表面投影到平面上。 早期世界地图 主条目:早期世界地图 巴比伦世界地图...
Musashimurayama武蔵村山市— Thành phố — Hiệu kỳẤn chươngVị trí của Musashimurayama ở TokyoMusashimurayama Quốc giaNhật BảnVùngKantōTỉnhTokyoChính quyền • Thị trưởngArai MitsuoDiện tích • Tổng cộng15,37 km2 (593 mi2)Dân số (1 tháng 1 năm 2010) • Tổng cộng69,950 • Mật độ4.550/km2 (11,800/mi2)Múi giờJST (UTC+9)- ...
Yugoslav communist politician and activist (1904–1937) Milan GorkićMilan Gorkić photographed shortly after he was arrested by the NKVD in 1937General Secretary of the Central Committee of the Communist Party of YugoslaviaIn office1932 – 23 October 1937DeputyJosip Broz TitoPreceded byĐuro Đaković1Succeeded byJosip Broz Tito2Member of the Presidium of the Executive Committee of the Communist InternationalIn office1927 – 23 October 1937 Personal detailsBornJozef Či...
Not to be confused with Thomas Shelton (translator). Thomas Shelton – 1646 Thomas Shelton (1600/01–1650(?)) was an English stenographer and the inventor of a much-used British 17th- and 18th-century stenography. Life The 1647 edition of Thomas Shelton's Tachygraphie contains a portrait giving his age as 46, implying that he was born in 1600/01. Nothing sure is known about his origin and education, but it was supposed that he came from the well-known Shelton family which owned much land in...
Commercial film production The film industry or motion picture industry comprises the technological and commercial institutions of filmmaking, i.e., film production companies, film studios, cinematography, animation, film production, screenwriting, pre-production, post-production, film festivals, distribution, and actors. Though the expense involved in making films almost immediately led film production to concentrate under the auspices of standing production companies, advances in affordable...
For the film by Hollis Frampton, see Zorns Lemma. Mathematical proposition equivalent to the axiom of choice Zorn's lemma can be used to show that every connected graph has a spanning tree. The set of all sub-graphs that are trees is ordered by inclusion, and the union of a chain is an upper bound. Zorn's lemma says that a maximal tree must exist, which is a spanning tree since the graph is connected.[1] Zorn's lemma is not needed for finite graphs, such as the one pictured here. Zorn...