Read other articles:
Jalan Tol Medan—BinjaiInformasi ruteDikelola oleh PT Hutama Karya (Persero)Panjang:16.8 km (10,4 mi)Berdiri:13 Oktober 2017; 6 tahun lalu (2017-10-13) – sekarangPersimpangan besarUjung Barat: Jalan Tol Belawan—Medan—Tanjung Morawa Simpang Susun Tanjung MuliaRamp MarelanSimpang Susun Helvetia Simpang Susun SemayangSimpang Susun BinjaiUjung Timur:Jalan Tol Binjai—LangsaLetakKota besar:BinjaiDeli SerdangMedanSistem jalan bebas hambatanAH 25 Sistem Jalan di Indo...
Alstom S.A.SebelumnyaAlsthom, GEC AlsthomJenisSociété AnonymeKode emitenEuronext: ALOKomponen CAC 40IndustriTransportasi relDidirikan1928; 96 tahun lalu (1928)KantorpusatSaint-Ouen-sur-Seine, PrancisTokohkunciHenri Poupart-Lafarge (Chairman dan CEO)ProdukKendaraan relPersinyalanPendapatan €8,785 milyar (2020-21)[1]Laba operasi €373 juta (2020-21)[1]Laba bersih €259 juta (2020-21)[1]Total aset €28,566 milyar (2020-21)[1]Total ekuitas €9,117...
Peta menunjukkan lokasi Clarin Clarin adalah munisipalitas yang terletak di provinsi Misamis Occidental, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 34.655 jiwa dan 6.552 rumah tangga. Pembagian wilayah Secara administratif Clarin terbagi menjadi 29 barangay, yaitu: Bernad Bito-on Cabunga-an Canibungan Daku Canibungan Putol Canipacan Dalingap Dela Paz Dolores Gata Daku Gata Diot Guba (Ozamis) Kinangay Norte Kinangay Sur Lapasan Lupagan Malibangcao Masabud Mialen Pan...
Pour les articles homonymes, voir BPC, Banque populaire (homonymie) et Banque centrale chinoise. Cet article est une ébauche concernant la Chine et la finance. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Banque populaire de Chine中国人民银行 Siège 32 rue Chéngfāng, Xicheng, Pékin. Coordonnéesgéographiquesdu siège 39° 54′ 24″ nord, 116° 21′ 14″ est Créati...
For other uses, see WCRA (disambiguation). Radio station in Effingham, IllinoisWCRAEffingham, IllinoisBroadcast areaEffingham, IllinoisFrequency1090 AM (kHz)BrandingWCRA Talk - AM 1090ProgrammingFormatNews TalkOwnershipOwnerCromwell Radio Group(The Cromwell Group, Inc. of Illinois)Sister stationsWCRC, WHQQ, WJKGHistoryFirst air dateJune 8, 1947[1]Technical informationClassDPower1,000 watts (Daytime only)Translator(s)99.5 MHz (W258CQ)96.3 MHz (W242CK)107.7 MHz W299CO (Effingham)Li...
Disambiguazione – Se stai cercando altri significati, vedi Zerbo (disambigua). Questa voce sull'argomento centri abitati della provincia di Pavia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Zerbocomune LocalizzazioneStato Italia Regione Lombardia Provincia Pavia AmministrazioneSindacoFABRIS SIMONA (vicesindaco f.f.)[1] (lista civica) dal 16-4-2022 TerritorioCoordinate45°06′37.67″N 9°23′45.81″E /...
Beauty pageant Nuestra Belleza Paraguay 2014DateSeptember 13, 2014[1]PresentersKike Casanova Tania DomaniczkyCarmiña MasiVenueYacht & Golf Club Paraguayo, Asunción, ParaguayBroadcasterLaTeleEntrants15Placements8WinnerMU: Sally JaraMW: Myriam ArévalosMI: Jéssica ServínME: Sendy Cáceres← 20132015 → The Nuestra Belleza Paraguay 2014 pageant was held at the Yacht & Golf Club Paraguayo on September 13, 2014, to select Paraguayan representatives to the fo...
† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...
American botanist (1919-1992) Arthur John CronquistBornMarch 19, 1919San Jose, CaliforniaDiedMarch 22, 1992 (1992-03-23) (aged 73)Provo, UtahNationalityAmericanAlma materIdaho State UniversityUtah State UniversityUniversity of MinnesotaKnown forCronquist systemAwardsLinnean Medal (1986)Leidy Award (1970)[1]Scientific careerFieldsBotanyInstitutionsNew York Botanical Garden Arthur John Cronquist (March 19, 1919 – March 22, 1992) was an American biologist, botan...
第三十二届夏季奥林匹克运动会柔道比賽比賽場館日本武道館日期2021年7月24日至31日項目數15参赛选手393(含未上场5人)位選手,來自128(含未上场4队)個國家和地區← 20162024 → 2020年夏季奥林匹克运动会柔道比赛个人男子女子60公斤级48公斤级66公斤级52公斤级73公斤级57公斤级81公斤级63公斤级90公斤级70公斤级100公斤级78公斤级100公斤以上级78公斤以上级团体混...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
The Anaphora of the Apostolic Tradition, also known as the Anaphora of Hippolytus, is an ancient Christian Anaphora (also known as a Eucharistic Prayer) which is found in chapter four of the Apostolic Tradition. It should not be confused with the Syriac Orthodox Anaphora of the Twelve Apostles, which is similar, and may be one of several liturgies derived from this Anaphora, yet is considerably longer and more ornate.[1] It was used extensively by Gregory Dix in his research for his b...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the articl...
هدنة كومبين الأولىمعلومات عامةالبلد فرنسا المكان كومبيينRethondes (en) الإحداثيات 49°25′39″N 2°54′22″E / 49.4275°N 2.9061°E / 49.4275; 2.9061 بتاريخ 11 نوفمبر 1918[1] المشاركون Matthias Erzberger (en) فرديناند فوشRosslyn Wemyss, 1st Baron Wester Wemyss (en) معاهدة فرساي تعديل - تعديل مصدري - تعديل ويكي بيانات فردي�...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2020) التسلسل الزمني لجائحة فيروس كورونا 2019-20 في مايو 2020معلومات عامةجزء من الخط الزمني لجائحة فيروس كورونا 2019-20 جانب من جوانب جائحة فيروس كورونا الموضوع الرئيس جائ�...
South African businessman Sammy MarksBorn11 July 1844Tauragė, Russian EmpireDied18 February 1920Johannesburg, Transvaal Union of South AfricaNationalityLithuanianOrganizationBusiness President Reitz of the Free State and President Kruger of the ZAR on the occasion of the joining of the Transvaal and Free State by railway, 21 May 1892. Sammy Marks stands fifth from the right. Sammy Marks, Barnet Lewis, Isaac Lewis Samuel Marks (11 July 1844 – 18 February 1920) was a Russian Empire-born Sout...
Natalie Clifford Barney Makam Natalie Clifford Barney Natalie Clifford Barney (31 Oktober 1876 – 2 Februari 1972) merupakan seorang dramawan Amerika, penyair dan novelis yang hidup sebagai ekspatriat di Paris. Barney lahir pada 1876 di Dayton, Ohio, ayahandanya adalah Albert Clifford Barney dan ibundanya adalah Alice Pike Barney.[1] Ibundanya memiliki keturunan Prancis, Belanda dan Jerman dan ayahandanya adalah keturunan Inggris; putra seorang pengusaha gerbong kereta api yang kaya ...
Education in MalaysiaMinistry of EducationMinister of EducationFadhlina SidekNational education budget (2020)BudgetRM64.1 billion (US$15.4 billion)[1]General detailsPrimary languages Malay (Official) English Mandarin Tamil System typeNationalEstablished1956Literacy (2009)Total95% (all 15 yrs and above)Male95% total, 98% 15–24 yrsFemale95% total, 98% 15–24 yrsEnrollmentTotal5,407,865 with 405,716 teachers (ratio 13:1), incl. 163,746 pre-schoolPrimary2,899,228 (survival r...
Equipment which provides breathing gas to an underwater diver Underwater breathing apparatusA museum display of a variety of different underwater breathing apparatus configurationsAcronymUBAUsesprovision of breathing gas to an underwater diverRelated itemsBreathing apparatus, diving equipment, life-support equipment Underwater breathing apparatus is equipment which allows the user to breathe underwater. The three major categories of ambient pressure underwater breathing apparatus are: Open ci...
15.000 jumlah parsial pertama dari 0 + 1 − 2 + 3 − 4 + ⋯ Dalam matematika, 1 − 2 + 3 − 4 + ⋯ adalah deret tak hingga yang suku-sukunya merupakan bilangan bulat positif yang berurutan, diberi tanda plus dan minus secara bergantian satu sama lain membentuk deret selang-seling. Dengan menggunakan notasi penjumlahan sigma, jumlah m suku pertama deret tersebut dapat dinyatakan sebagai ∑ n = 1 m n ( − 1 ) n − 1 . {\displaystyle \sum _{n=1}^{m}n(-1)^{n-1}.} Deret tak...