A leg mechanism (walking mechanism) is a mechanical system designed to provide a propulsive force by intermittent frictional contact with the ground. This is in contrast with wheels or continuous tracks which are intended to maintain continuous frictional contact with the ground. Mechanical legs are linkages that can have one or more actuators, and can perform simple planar or complex motion. Compared to a wheel, a leg mechanism is potentially better fitted to uneven terrain, as it can step over obstacles.[1]
An early design for a leg mechanism called the Plantigrade Machine by Pafnuty Chebyshev was shown at the Exposition Universelle (1878). The original engravings for this leg mechanism are available.[2] The design of the leg mechanism for the Ohio State Adaptive Suspension Vehicle (ASV) is presented in the 1988 book Machines that Walk.[3] In 1996, W-B. Shieh presented a design methodology for leg mechanisms.[4]
horizontal speed as constant as possible while touching the ground (support phase)[1][6]
while the foot is not touching the ground, it should move as fast as possible
constant torque/force input (or at least no extreme spikes/changes)
stride height (enough for clearance, not too much to conserve energy)
the foot has to touch the ground for at least half of the cycle for a two/four leg mechanism[1] or respectively, a third of the cycle for a three/six leg mechanism
minimized moving mass
vertical center of mass always inside the base of support[1]
the speed of each leg or group of legs should be separately controllable for steering[6]
the leg mechanism should allow forward and backward walking[6]
Another design goal can be, that stride height and length etc. can be controlled by the operator.[6] This can relatively easily be achieved with a hydraulic leg mechanism, but is not practicable with a crank-based leg mechanism.[6]
The optimization has to be done for the whole vehicle – ideally the force/torque variation during a rotation should cancel each other out.[1]
^P. L. Tchebyshev. Plantigrade Machine Engraving. stored in the Musée des arts et métiers du Conservatoire national des arts et métiers Paris, France CNAM 10475-0000.
^Giesbrecht, Daniel (8 April 2010). Design and optimization of a one-degree-of-freedom eight-bar leg mechanism for a walking machine (Thesis). University of Manitoba. hdl:1993/3922.
^Funabashi, H.; Takeda, Y.; Kawabuchi, I.; Higuchi, M. (20–24 June 1999). Development of a walking chair with a self-attitude-adjusting mechanism for stable walking on uneven terrain. 10th World Congress on the Theory of Machines and Mechanisms. Oulu, Finland. pp. 1164–1169.
^Simionescu, P.A. (21–24 August 2016). MeKin2D: Suite for Planar Mechanism Kinematics(PDF). ASME 2016 Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Charlotte, NC, USA. pp. 1–10. Retrieved 7 January 2017.
^Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD Users (1st ed.). Boca Raton, Florida: CRC Press. ISBN978-1-4822-5290-3.