Crank (mechanism)

Hand crank for a winch on a sailboat - commonly referred to as a winch handle.

A crank is an arm attached at a right angle to a rotating shaft by which circular motion is imparted to or received from the shaft. When combined with a connecting rod, it can be used to convert circular motion into reciprocating motion, or vice versa. The arm may be a bent portion of the shaft, or a separate arm or disk attached to it. Attached to the end of the crank by a pivot is a rod, usually called a connecting rod (conrod).

The term often refers to a human-powered crank which is used to manually turn an axle, as in a bicycle crankset or a brace and bit drill. In this case a person's arm or leg serves as the connecting rod, applying reciprocating force to the crank. There is usually a bar perpendicular to the other end of the arm, often with a freely rotatable handle or pedal attached.

Examples

Hand crank on a pencil sharpener
Animation of a multi-cylinder engine

Familiar examples include:

Hand-powered cranks

Foot-powered cranks

Engines

Almost all reciprocating engines use cranks (with connecting rods) to transform the back-and-forth motion of the pistons into rotary motion. The cranks are incorporated into a crankshaft.

History

Asia

China

Tibetan operating a quern (1938). The upright handle of such rotary handmills, set at a distance from the centre of rotation, works as a crank.[1][2]

It was thought that evidence of the earliest true crank handle was found in a Han era glazed-earthenware tomb model of an agricultural winnowing fan dated no later than 200 AD,[3][4] but since then a series of similar pottery models with crank operated winnowing fans were unearthed, with one of them dating back to the Western Han dynasty (202 BC – 9 AD).[5][6] The Chinese used the crank-and-connecting rod in ancient blasting apparatus, textile machinery and agricultural machinery no later than the Western Han dynasty (202 BC – 9 AD). It was first used in the manually operated quern and long (grain decortication item) before evolving into other devices. According to F. Lisheng and T. Qingjun, the hand-crank of the rotary quern was different from a crank, which was the combination of a hand-crank and a push-and-pull connecting rod by a hinge.[7] Eventually crank-and-connecting rods were used in the inter-conversion or rotary and reciprocating motion for other applications such as flour-sifting, treadle spinning wheels, water-powered furnace bellows, and silk-reeling machines.[8][6]

Middle East

Ancient Egyptians had manual drills resembling a crank at the time of the Old Kingdom(2686–2181 BCE) and even a hieroglyph for the tool.[9] However the Ancient Egyptian drill didn't operate as a true crank.[10]

Later evidence for the crank, combined with a connecting rod in a machine, appears in the Ancient Greek Hierapolis sawmill in Roman Asia from the 3rd century AD and two stone sawmills at Gerasa, Roman Syria, and Ephesus, Greek Ionia under Rome, (both 6th century AD).[11] On the pediment of the Hierapolis mill, a waterwheel fed by a mill race is shown powering via a gear train two frame saws which cut rectangular blocks by the way of some kind of connecting rods and, through mechanical necessity, cranks. The accompanying inscription is in Greek.[12] The crank and connecting rod mechanisms of the other two archaeologically attested sawmills worked without a gear train.[13][14]

The crank appears in the mid-9th century in several of the hydraulic devices described by the Banū Mūsā brothers in their Book of Ingenious Devices.[15] These devices, however, made only partial rotations and could not transmit much power,[16] although only a small modification would have been required to convert it to a crankshaft.[17]

Al-Jazari (1136–1206) described a crank and connecting rod system in a rotating machine in two of his water-raising machines.[18] His twin-cylinder pump incorporated a crankshaft.[19] A crank is later also described in an early 15th century Arabic manuscript of Hero of Alexandria's Mechanics.[20]

Europe

Antiquity

The first rotary hand mills, or rotary querns, appeared in Spain (600 BC – 500 BC),[21][22] before they spread to the East.[21][22] The handle near the outer edge of the rotary part makes the crank,[21][23][24] a human arm powering the rotation would be the connecting rod.[21] According to F. Lisheng and T. Qingjun, the hand-crank of the rotary quern was different from a crank, which was the combination of a hand-crank and a push-and-pull connecting rod by a hinge.[7]

The Antikythera mechanism, dated to around 200 BC,[25][26] used a crank as a part of its mechanism.[27] The crank was used to manually setup the starting date for a prediction.[28][29]

Hierapolis sawmill (3rd century AD), a machine that combine a crank with a connecting rod.[30]

Later evidence for the crank, combined with a connecting rod in a machine, appears in the Ancient Greek Hierapolis sawmill in Roman Asia from the 3rd century AD and two stone sawmills at Gerasa, Roman Syria, and Ephesus, Greek Ionia under Rome, (both 6th century AD).[11] On the pediment of the Hierapolis mill, a waterwheel fed by a mill race is shown powering via a gear train two frame saws which cut rectangular blocks by the way of some kind of connecting rods and, through mechanical necessity, cranks. The accompanying inscription is in Greek.[12] The crank and connecting rod mechanisms of the other two archaeologically attested sawmills worked without a gear train.[13][14]

Roman crank handle from Augusta Raurica, dated to the 2nd century AD[31]

A Roman iron crank of yet unknown purpose dating to the 2nd century AD was excavated in Augusta Raurica, Switzerland. The 82.5 cm (32 inches) long piece has fitted to one end a 15 cm (6 inches) long bronze handle, the other handle being lost.[32][31]

An true iron crank about 40 cm (16 inches) long was excavated, along with a pair of shattered mill-stones of 50 to 65 cm (20 to 26 inches) diameter and diverse iron items, in Aschheim, close to Munich. The crank-operated Roman mill is dated to the late 2nd century AD.[33] However an often cited modern reconstruction of a bucket-chain pump driven by hand-cranked flywheels from the Nemi ships has been dismissed as "archaeological fantasy".[34]

In ancient literature, there is a reference to the workings of water-powered marble saws close to Trier, now Germany, by the late 4th century poet Ausonius;[30] about the same time, these mill types seem also to be indicated by the Greek Christian saint Gregory of Nyssa from Anatolia, demonstrating a diversified use of water-power in many parts of the Roman Empire[35] The three finds push back the date of the invention of the crank and connecting rod by a full millennium:[30]

With the crank and connecting rod system, all elements for constructing a steam engine (invented in 1712) — Hero's aeolipile (generating steam power), the cylinder and piston (in metal force pumps), non-return valves (in water pumps), gearing (in water mills and clocks) — were known in Roman times.[36]

Middle Ages

Vigevano's war carriage

A rotary grindstone − the earliest representation of one −[37] which is operated by a crank handle is shown in the Carolingian manuscript Utrecht Psalter; the pen drawing of around 830 goes back to a late antique original.[38] A musical tract ascribed to the abbot Odo of Cluny (c. 878−942) describes a fretted stringed instrument which was sounded by a resined wheel turned with a crank; the device later appears in two 12th century illuminated manuscripts.[37] There are also two pictures of Fortuna cranking her wheel of destiny from this and the following century.[37]

The use of crank handles in trepanation drills was depicted in the 1887 edition of the Dictionnaire des Antiquités Grecques et Romaines and ascribed to the Spanish Muslim surgeon Abu al-Qasim al-Zahrawi; however, the existence of such a device cannot be confirmed by the original illuminations and thus has to be discounted.[20] The Benedictine monk Theophilus Presbyter (c. 1070−1125) described crank handles "used in the turning of casting cores".[39]

The Italian physician Guido da Vigevano (c. 1280−1349), planning for a new crusade, made illustrations for a paddle boat and war carriages that were propelled by manually turned compound cranks and gear wheels (center of image).[40] The Luttrell Psalter, dating to around 1340, describes a grindstone which was rotated by two cranks, one at each end of its axle; the geared hand-mill, operated either with one or two cranks, appeared later in the 15th century;[41]

Medieval cranes were occasionally powered by cranks, although more often by windlasses.[42]

Renaissance

15th century paddle-wheel boat whose paddles are turned by single-throw crankshafts (Anonymous of the Hussite Wars)

The crank became common in Europe by the early 15th century, often seen in the works of those such as the German military engineer Konrad Kyeser.[41] Devices depicted in Kyeser's Bellifortis include cranked windlasses (instead of spoke-wheels) for spanning siege crossbows, cranked chain of buckets for water-lifting and cranks fitted to a wheel of bells.[41] Kyeser also equipped the Archimedes screws for water-raising with a crank handle, an innovation which subsequently replaced the ancient practice of working the pipe by treading.[43] The earliest evidence for the fitting of a well-hoist with cranks is found in a miniature of c. 1425 in the German Hausbuch of the Mendel Foundation.[44]

German crossbowman cocking his weapon with a cranked rack-and-pinion device (ca. 1493)

The first depictions of the compound crank in the carpenter's brace appear between 1420 and 1430 in various northern European artwork.[45] The rapid adoption of the compound crank can be traced in the works of the Anonymous of the Hussite Wars, an unknown German engineer writing on the state of the military technology of his day: first, the connecting-rod, applied to cranks, reappeared, second, double compound cranks also began to be equipped with connecting-rods and third, the flywheel was employed for these cranks to get them over the 'dead-spot'.

One of the drawings of the Anonymous of the Hussite Wars shows a boat with a pair of paddle-wheels at each end turned by men operating compound cranks (see above). The concept was much improved by the Italian engineer and writer Roberto Valturio in 1463, who devised a boat with five sets, where the parallel cranks are all joined to a single power source by one connecting-rod, an idea also taken up by his compatriot Francesco di Giorgio.[46]

Water-raising pump powered by crank and connecting rod mechanism (Georg Andreas Böckler, 1661)

In Renaissance Italy, the earliest evidence of a compound crank and connecting-rod is found in the sketch books of Taccola, but the device is still mechanically misunderstood.[47] A sound grasp of the crank motion involved demonstrates a little later Pisanello who painted a piston-pump driven by a water-wheel and operated by two simple cranks and two connecting-rods.[47]

The 15th century also saw the introduction of cranked rack-and-pinion devices, called cranequins, which were fitted to the crossbow's stock as a means of exerting even more force while spanning the missile weapon (see right).[48] In the textile industry, cranked reels for winding skeins of yarn were introduced.[41]

Around 1480, the early medieval rotary grindstone was improved with a treadle and crank mechanism. Cranks mounted on push-carts first appear in a German engraving of 1589.[49]

From the 16th century onwards, evidence of cranks and connecting rods integrated into machine design becomes abundant in the technological treatises of the period: Agostino Ramelli's The Diverse and Artifactitious Machines of 1588 alone depicts eighteen examples, a number which rises in the Theatrum Machinarum Novum by Georg Andreas Böckler to 45 different machines, one third of the total.[50]

20th century

Cranks were formerly common on some machines in the early 20th century; for example almost all phonographs before the 1930s were powered by clockwork motors wound with cranks. Reciprocating piston engines use cranks to convert the linear piston motion into rotational motion. Internal combustion engines of early 20th century automobiles were usually started with hand cranks (known as starting handles in the UK), before electric starters came into general use. The last car model which incorporated a crank was the Citroën 2CV 1948-1990

The 1918 Reo owner's manual describes how to hand crank the automobile:

  • First: Make sure the gear shifting lever is in neutral position.
  • Second: The clutch pedal is unlatched and the clutch engaged. The brake pedal is pushed forward as far as possible setting brakes on the rear wheel.
  • Third: See that spark control lever, which is the short lever located on top of the steering wheel on the right side, is back as far as possible toward the driver and the long lever, on top of the steering column controlling the carburetor, is pushed forward about one inch from its retarded position.
  • Fourth: Turn ignition switch to point marked "B" or "M"
  • Fifth: Set the carburetor control on the steering column to the point marked "START." Be sure there is gasoline in the carburetor. Test for this by pressing down on the small pin projecting from the front of the bowl until the carburetor floods. If it fails to flood it shows that the fuel is not being delivered to the carburetor properly and the motor cannot be expected to start. See instructions on page 56 for filling the vacuum tank.
  • Sixth: When it is certain the carburetor has a supply of fuel, grasp the handle of starting crank, push in endwise to engage ratchet with crank shaft pin and turn over the motor by giving a quick upward pull. Never push down, because if for any reason the motor should kick back, it would endanger the operator.

Crank axle

A crank axle is a crankshaft which also serves the purpose of an axle. It is used on steam locomotives with inside cylinders.

See also

References

  1. ^ Ritti, Grewe & Kessener 2007, p. 159
  2. ^ Lucas 2005, p. 5, fn. 9
  3. ^ N. Sivin; Needham, Joseph (August 1968), "Review: Science and Civilisation in China by Joseph Needham", Journal of Asian Studies, 27 (4), Association for Asian Studies: 859–864 [862], doi:10.2307/2051584, JSTOR 2051584, S2CID 163331341
  4. ^ White 1962, p. 104
  5. ^ Lisheng, Feng; Qingjun, Tong (2009). "Crank-Connecting Rod Mechanism: Its Application in Ancient China and Its Origins". In Hong-Sen Yan; Marco Ceccarelli (eds.). International Symposium on History of Machines and Mechanisms. Springer Science and Business Media. p. 247. ISBN 978-1-4020-9484-2.
  6. ^ a b Needham 1986, pp. 118–119.
  7. ^ a b Lisheng & Qingjun 2009, pp. 248–249.
  8. ^ Lisheng & Qingjun 2009, pp. 236–249.
  9. ^ Needham, Joseph (2007). Mechanical engineering. Science and civilisation in China / by Joseph Needham Vol. 4, Physics and physical technology (6. print ed.). Cambridge: Cambridge Univ. Press. p. 114. ISBN 978-0-521-05803-2.
  10. ^ Hartenberg, Richard S.; Schmidt, John (1969). "The Egyptian Drill and the Origin of the Crank". Technology and Culture. 10 (2): 155–165. doi:10.2307/3101475. ISSN 0040-165X. JSTOR 3101475.
  11. ^ a b Ritti, Grewe & Kessener 2007, p. 161:

    Because of the findings at Ephesus and Gerasa the invention of the crank and connecting rod system has had to be redated from the 13th to the 6th c; now the Hierapolis relief takes it back another three centuries, which confirms that water-powered stone saw mills were indeed in use when Ausonius wrote his Mosella.

  12. ^ a b Ritti, Grewe & Kessener 2007, pp. 139–141
  13. ^ a b Ritti, Grewe & Kessener 2007, pp. 149–153
  14. ^ a b Mangartz 2006, pp. 579f.
  15. ^ A. F. L. Beeston, M. J. L. Young, J. D. Latham, Robert Bertram Serjeant (1990), The Cambridge History of Arabic Literature, Cambridge University Press, p. 266, ISBN 0-521-32763-6{{citation}}: CS1 maint: multiple names: authors list (link)
  16. ^ al-Hassan & Hill 1992, pp. 45, 61
  17. ^ Banū Mūsā; Hill, Donald Routledge (1979), The Book of Ingenious Devices (Kitáb al-Ḥiyal) by the Banú (sons of) Músà bin Shákir, Springer Publishing, pp. 23–4, ISBN 90-277-0833-9
  18. ^ Ahmad Y Hassan. The Crank-Connecting Rod System in a Continuously Rotating Machine.
  19. ^ Sally Ganchy, Sarah Gancher (2009), Islam and Science, Medicine, and Technology, The Rosen Publishing Group, p. 41, ISBN 978-1-4358-5066-8
  20. ^ a b White 1962, p. 170
  21. ^ a b c d Ritti, Grewe & Kessener 2007, p. 158, 159
  22. ^ a b Alonso i Martínez, Natalia (2015). "«Moliendo en ibero, moliendo en griego»: aculturación y resistencia tecnológica en el Mediterráneo occidental durante la Edad del Hierro". Vegueta: Anuario de la Facultad de Geografía e Historia (15): 23–36. ISSN 1133-598X.
  23. ^ Lucas 2005, p. 5, fn. 9
  24. ^ Needham, Joseph (1965-01-02). Science and Civilisation in China, Part 2, Mechanical Engineering. Cambridge University Press. p. 186. ISBN 978-0-521-05803-2.
  25. ^ Voulgaris, Aristeidis; Mouratidis, Christophoros; Vossinakis, Andreas (2023-08-27). "The Initial Calibration Date of the Antikythera Mechanism after the Saros spiral mechanical Apokatastasis". arXiv:2203.15045. {{cite journal}}: Cite journal requires |journal= (help)
  26. ^ Carman, Christián C. (2017). "The Final Date of the Antikythera Mechanism". Journal for the History of Astronomy. 48 (3): 312–323. Bibcode:2017JHA....48..312C. doi:10.1177/0021828617721553. hdl:11336/72114. ISSN 0021-8286.
  27. ^ Tyaglova-Fayer, Svetlana (2023-11-14), The new reading of the 3D reconstruction of the Antikythera machine (30-day calendar), retrieved 2024-08-25
  28. ^ Diolatzis, Ioannis S.; Pavlogeorgatos, Gerasimos (2018-03-01). "Deepening to Antikythera mechanism via its interactivity". Digital Applications in Archaeology and Cultural Heritage. 8: 10–26. doi:10.1016/j.daach.2017.11.005. ISSN 2212-0548.
  29. ^ Freeth, Tony (2022-01-01). "An Ancient Greek Astronomical Calculation Machine Reveals New Secrets". Scientific American. Retrieved 2024-08-25.
  30. ^ a b c Ritti, Grewe & Kessener 2007, p. 161:

    Because of the findings at Ephesus and Gerasa the invention of the crank and connecting rod system has had to be redated from the 13th to the 6th c; now the Hierapolis relief takes it back another three centuries, which confirms that water-powered stone saw mills were indeed in use when Ausonius wrote his Mosella.

  31. ^ a b Schiöler 2009, pp. 113f.
  32. ^ Laur-Belart 1988, pp. 51–52, 56, fig. 42
  33. ^ Volpert 1997, pp. 195, 199
  34. ^ White 1962, pp. 105f.; Oleson 1984, pp. 230f.
  35. ^ Wilson 2002, p. 16
  36. ^ Ritti, Grewe & Kessener 2007, p. 156, fn. 74
  37. ^ a b c White 1962, p. 110
  38. ^ Hägermann & Schneider 1997, pp. 425f.
  39. ^ Needham 1986, pp. 112–113.
  40. ^ Hall 1979, p. 80
  41. ^ a b c d White 1962, p. 111
  42. ^ Hall 1979, p. 48
  43. ^ White 1962, pp. 105, 111, 168
  44. ^ White 1962, p. 167; Hall 1979, p. 52
  45. ^ White 1962, p. 112
  46. ^ White 1962, p. 114
  47. ^ a b White 1962, p. 113
  48. ^ Hall 1979, pp. 74f.
  49. ^ White 1962, p. 167
  50. ^ White 1962, p. 172

Bibliography

  • Curtis, Robert I. (2008). "Food Processing and Preparation". In Oleson, John Peter (ed.). The Oxford Handbook of Engineering and Technology in the Classical World. Oxford: Oxford University Press. ISBN 978-0-19-518731-1.
  • Frankel, Rafael (2003), "The Olynthus Mill, Its Origin, and Diffusion: Typology and Distribution", American Journal of Archaeology, 107 (1): 1–21, doi:10.3764/aja.107.1.1, S2CID 192167193
  • Hall, Bert S. (1979), The Technological Illustrations of the So-Called "Anonymous of the Hussite Wars". Codex Latinus Monacensis 197, Part 1, Wiesbaden: Dr. Ludwig Reichert Verlag, ISBN 3-920153-93-6
  • Hägermann, Dieter; Schneider, Helmuth (1997), Propyläen Technikgeschichte. Landbau und Handwerk, 750 v. Chr. bis 1000 n. Chr. (2nd ed.), Berlin, ISBN 3-549-05632-X{{citation}}: CS1 maint: location missing publisher (link)
  • al-Hassan, Ahmad Y.; Hill, Donald R. (1992), Islamic Technology. An Illustrated History, Cambridge University Press, ISBN 0-521-42239-6
  • Lucas, Adam Robert (2005), "Industrial Milling in the Ancient and Medieval Worlds. A Survey of the Evidence for an Industrial Revolution in Medieval Europe", Technology and Culture, 46 (1): 1–30, doi:10.1353/tech.2005.0026, S2CID 109564224
  • Laur-Belart, Rudolf (1988), Führer durch Augusta Raurica (5th ed.), Augst{{citation}}: CS1 maint: location missing publisher (link)
  • Mangartz, Fritz (2006), "Zur Rekonstruktion der wassergetriebenen byzantinischen Steinsägemaschine von Ephesos, Türkei. Vorbericht", Archäologisches Korrespondenzblatt, 36 (1): 573–590
  • Needham, Joseph (1986), Science and Civilisation in China: Volume 4, Physics and Physical Technology: Part 2, Mechanical Engineering, Cambridge University Press, ISBN 0-521-05803-1.
  • Oleson, John Peter (1984), Greek and Roman Mechanical Water-Lifting Devices: The History of a Technology, University of Toronto Press, ISBN 90-277-1693-5
  • Volpert, Hans-Peter (1997), "Eine römische Kurbelmühle aus Aschheim, Lkr. München", Bericht der Bayerischen Bodendenkmalpflege, 38: 193–199, ISBN 3-7749-2903-3
  • White, Lynn Jr. (1962), Medieval Technology and Social Change, Oxford: At the Clarendon Press
  • Ritti, Tullia; Grewe, Klaus; Kessener, Paul (2007), "A Relief of a Water-powered Stone Saw Mill on a Sarcophagus at Hierapolis and its Implications", Journal of Roman Archaeology, 20: 138–163, doi:10.1017/S1047759400005341, S2CID 161937987
  • Schiöler, Thorkild (2009), "Die Kurbelwelle von Augst und die römische Steinsägemühle", Helvetia Archaeologica, vol. 40, no. 159/160, pp. 113–124
  • Wilson, Andrew (2002), "Machines, Power and the Ancient Economy", The Journal of Roman Studies, vol. 92, pp. 1–32

Read other articles:

Kompleks piramida Senusret III, piramida Itakayt adalah yang ketiga dari kanan atas Itakayt merupakan seorang putri Mesir Kuno dari Dinasti ke-12, pada sekitar tahun 1800 SM. Ia terutama dikenal dari piramida kecilnya di samping Senusret III di Dahshur.[1] Ia bergelar putri raja dari tubuhnya, berkuasa, anggun dan dicintai. Piramida Piramidanya di sisi utara piramida raja berukuran sekitar 16.80 meter di dasar, dan dulunya juga tingginya 16.80 meter tingginya. Dibangun dari batu bata ...

 

 

Jalen Hurts (2020–present) Nick Foles (2012–2014, 2017–2018), won Super Bowl LII These quarterbacks have started at least one game for the Philadelphia Eagles of the National Football League. They are listed in order of the date of each player's first start as the quarterback for the Eagles. Regular season Carson Wentz (2016–2020) Sam Bradford (2015) Michael Vick (2010–2013) Kevin Kolb (2009–2010) Donovan McNabb (1999–2009) Ron Jaworski (1977–1986) Randall Cunningham (1987–...

 

 

Italian Earth-observation and reconnaissance satellite OPTSAT-3000Launch of OPTSAT-3000 on board Vega flight VV10NamesSHALOMMission typeReconnaissanceOperatorMinistry of DefenceCOSPAR ID2017-044A[1]SATCAT no.42900[2]WebsiteOPTSAT-3000Mission duration>7 years (planned)6 years, 9 months and 3 days (elapsed) Spacecraft propertiesBusTecSAR[3]ManufacturerIsrael Aerospace IndustriesLaunch mass368 kg (811 lb)[1]Dimensions4.58 × 3...

WahonoWahono, 1992 Ketua Majelis Permusyawaratan Rakyat Republik Indonesia ke-8Masa jabatan1 Oktober 1992 – 30 September 1997 PendahuluKharis SuhudPenggantiHarmokoKetua Dewan Perwakilan Rakyat ke-11Masa jabatan1 Oktober 1992 – 30 September 1997 PendahuluKharis SuhudPenggantiHarmokoKetua Umum Golongan Karya ke-5Masa jabatan1988 – 26 Oktober 1993 PendahuluSudharmonoPenggantiHarmokoGubernur Jawa Timur ke-9Masa jabatan26 Agustus 1983 – 2...

 

 

Mountain of central Greece that hosts Delphi Parnassus redirects here. For other uses, see Parnassus (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mount Parnassus – news · newspapers · books · scholar · JSTOR (October 2012) (Learn how and when to remove this template message) ParnassusΠ�...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) أدولف لاندري   معلومات شخصية الميلاد 29 سبتمبر 1874 [1][2]  أجاكسيو  الوفاة 28 أغسطس 1956 (81 سنة)   باريس  مواطنة فرنسا  مناصب رئيس   في المنص�...

Questa voce o sezione sugli argomenti avvocati e magistrati non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Germán Riesco Errázuriz 13º Presidente del CileDurata mandato18 settembre 1901 –18 settembre 1906 PredecessoreAníbal Zañartu Zañartu SuccessorePedro Montt Montt Dati generaliPartito politicoPartito Liberale Cileno Firma G...

 

 

For other uses, see Sahtu (disambiguation). Administrative region in Northwest Territories, CanadaSahtu RegionAdministrative regionNorman Range and Kelly LakeNorman WellsFort Good HopeTulitaDelineColville LakeLocation within the Northwest TerritoriesCountryCanadaTerritoryNorthwest TerritoriesTerritorial ridingSahtuSettlement areaSahtuRegional office[1]Norman WellsPopulation (2016) • Total2,554Time zoneUTC−07:00 (MST) • Summer (DST)UTC−06:00 (DST) The S...

 

 

1957 film directed by Mark Robson This article is about the motion picture. For the TV show, see Peyton Place (TV series). For the book on which both of them were based, see Peyton Place (novel). Peyton PlaceTheatrical release posterDirected byMark RobsonScreenplay byJohn Michael HayesBased onPeyton Placeby Grace MetaliousProduced byJerry WaldStarring Lana Turner Hope Lange Lee Philips Lloyd Nolan Diane Varsi Arthur Kennedy Russ Tamblyn Terry Moore CinematographyWilliam C. MellorEdited byDavi...

Human settlement in EnglandFornham St GenevieveVillage signFornham St GenevieveLocation within SuffolkPopulation110 (2005)[1]DistrictWest Suffolk districtShire countySuffolkRegionEastCountryEnglandSovereign stateUnited KingdomPost townBury St EdmundsPostcode districtIP28PoliceSuffolkFireSuffolkAmbulanceEast of England List of places UK England Suffolk 52°16′41″N 0°42′32″E / 52.278°N 0.709°E / 52.278; 0.709 Fornham St Genevieve i...

 

 

American college basketball season 2017–18 Purdue Boilermakers men's basketballSummer Universiade Silver MedalistsNCAA tournament, Sweet SixteenConferenceBig Ten ConferenceRankingCoachesNo. 9APNo. 11Record30–7 (15–3 Big Ten)Head coachMatt Painter (13th season)Assistant coaches Brandon Brantley Greg Gary Steve Lutz Home arenaMackey ArenaSeasons← 2016–172018–19 → 2017–18 Big Ten Conference men's basketball standings vte Conf Overall Team W &...

 

 

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

Krishna Prasad Bhattarai, mantan Perdana Menteri Nepal. Krishna Prasad Bhattarai (bahasa Nepali: कृष्ण प्रसाद भट्टराई; 13 Desember 1924 – 4 Maret 2011) adalah pemimpin politik Nepal. Sebagai pemimpin dari Partai Kongres Nepal, dia membuat posisinya dengan transisi Nepal dari sebuah monarki absolut ke sistem multi-partai demokratis. Bhattarai dua kali Perdana Menteri Nepal, setelah memimpin Pemerintah Sementara dari 19 April 1990 sampai 2...

 

 

Genus of birds For the 2019 film, see Lyrebird (film). LyrebirdTemporal range: Early Miocene to present Superb lyrebird (Menura novaehollandiae) Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Family: MenuridaeLesson, 1828 Genus: MenuraLatham, 1801 Type species Menura novaehollandiae[1]Latham 1801 Species Menura novaehollandiae Menura alberti †Menura tyawanoides A lyrebird is either of two species of ground-dwelling Aus...

 

 

Strada europea E62 La strada europea E62 presso Briga, in Svizzera Lunghezza1 307 km Direzioneovest-est Stati Francia Svizzera Italia Estremità ovest Nantes Estremità est Genova Manuale La strada europea E62 è una strada di classe A e, come si evince dal numero, è una intermedia ovest-est. Si sviluppa in tre nazioni (Francia, Svizzera e Italia) per complessivi 1307 km collegando due grandi porti marittimi europei, Nantes e Genova. Tra le città più importanti toc...

An agar plate containing tryptone supporting growth of a micro-organism. Tryptone is the assortment of peptides formed by the digestion of casein by the protease trypsin.[1] Tryptone is commonly used in microbiology to produce lysogeny broth (LB) for the growth of E. coli and other microorganisms.[2] It provides a source of amino acids for the growing bacteria. Tryptone is similar to casamino acids, both being digests of casein, but casamino acids can be produced by acid hydro...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس إيطاليا 1984–85 تفاصيل الموسم كأس إيطاليا  النسخة 38  البلد إيطاليا  التاريخ بداية:22 أغسطس 1984  ...

 

 

埃莉察·扬科娃个人资料原文名Елица Атанасова Янкова出生 (1994-09-18) 1994年9月18日(29歲)保加利亞瓦爾納运动国家/地区 保加利亚运动自由式摔跤 奖牌记录 女子自由式摔跤 代表 保加利亚 奧林匹克運動會 2016年里約熱內盧 自由式48公斤級 歐洲運動會 2015年巴庫 自由式48公斤級 最近更新于:2023年9月25日 埃莉察·阿塔娜索娃·扬科娃(保加利亞語:Елица Ат...

1229 battle during the Almohad conquest of Majorca Battle of PortopíPart of Conquest of MajorcaCreu de Montcada (Tomás Vila, 1886), monument to the two fallen nobles in the battle.Date12 September 1229LocationSierra de Na Burguesa (Majorca)Result Aragonese victoryBelligerents Crown of Aragon Almohad CaliphateCommanders and leaders James I of Aragon Abu Yahya vteBattles in the Reconquista 8th century Covadonga 1st Roncevaux Pass Burbia River Orbieu River Lutos Las Babias Río Quirós Río Na...

 

 

  「永州」重定向至此。关于其他用法,请见「永州 (消歧义)」。 永州永地级市湘江浮橋,冷水灘區永州市在湖南省的地理位置坐标:26°25′12″N 111°36′47″E / 26.420°N 111.613°E / 26.420; 111.613国家 中华人民共和国省湖南省設立1995年11月21日政府駐地冷水滩区下级行政区2市辖区、1县级市、7县、1自治县政府 • 市委書記朱洪武(黎族) •...