Lake Pyhäselkä
|
Read other articles:
Halaman ini berisi artikel tentang kritik terhadap Marxisme, sebuah cabang dari sosialisme. Untuk kritik terhadap sosialisme secara umum, lihat Kritik terhadap sosialisme. Untuk kritik terhadap tindakan negara-negara komunis, lihat Kritik terhadap pemerintahan partai Komunis. Bagian dari seri tentangMarxisme Teori kerja Manifesto Komunis Sebuah Kontribusi untuk Kritik Politik Ekonomi Das Kapital Brumaire ke-28 Louis Napoleon Grundrisse Ideologi Jerman Ekonomi dan Filsafat Naskah 1844 Tesis Fe...
Untuk kelompok bernama G-15 di Eritrea, lihat G-15. Letak negara-negara anggota G15 Group of 15 (G15; bahasa Indonesia: Kelompok Lima Belas) didirikan pada Pertemuan Puncak Gerakan Non-Blok di Beograd, Yugoslavia pada September 1989. Organisasi ini terdiri dari negara-negara dari Amerika Utara, Amerika Selatan, Afrika, dan Asia dengan tujuan meningkatkan pertumbuhan dan kemakmuran. G15 memfokuskan pada kerja sama di antara negara berkembang di bidang investasi, perdagangan, dan teknologi. Ang...
Radio station in Fort Worth, TexasKLNOFort Worth, TexasBroadcast areaDallas/Fort Worth MetroplexFrequency94.1 MHz (HD Radio)BrandingQue Buena 94.1ProgrammingLanguage(s)SpanishFormatRegional MexicanSubchannelsHD4: La Mejor 92.9 (Regional Mexican)OwnershipOwnerUforia Audio Network(Univision Radio Illinois, Inc.)Sister stationsKESS-FM, KDXXAlso part of the Univision Cluster: TV Stations KUVN and KSTRHistoryFirst air date1961 (as KCPA)Former call signsKCPA (1961-1964)KCUL-FM (1964-1967)KBUY (1967...
American planetary scientist Carolyn PorcoBorn (1953-03-06) March 6, 1953 (age 71)Bronx, New York, U.S.Alma materCalifornia Institute of Technology Stony Brook UniversityKnown forLeader of Cassini Imaging Team; Discoveries about Saturn system; Member of Voyager Imaging Team; Expert in Planetary rings and Enceladus; The Day the Earth Smiled; Science communicator & public speaker; Film consultant.AwardsPorco asteroid; Lennart Nilsson Award (2009); AAS Carl Sagan Medal (2010);...
County of the Kingdom of Hungary This article is about the historical county of the Kingdom of Hungary. For other uses, see Zemplín. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zemplén County – news · newspapers · books · scholar · JSTOR (November 2007) (Learn how and when to remove this template messa...
Penelope Ann MillerMiller di ACE Eddie Awards 2012LahirPenelope Andrea Miller13 Januari 1964 (umur 60)Los Angeles, California, ASNama lainPenelope MillerPekerjaanAktrisTahun aktif1985–sekarangSuami/istriWill Arnett (m. 1994; bercerai 1995) James Huggins (m. 2000)Anak2 Penelope Ann Miller (lahir Penelope Andrea Miller; lahir 13 Januari 1964), terkadang disebut sebagai Penelope Miller, a...
Part of a series onBritish law Acts of Parliament of the United Kingdom Year 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...
Indigenous language family with two surviving dialects in Peru Arasairi language redirects here. Not to be confused with the Arazaire language, also of Peru. Harákmbutaratbuten huaʼaRegionPeruEthnicity2,090 Harakmbut (2013)Native speakers2,200 (2000–2007)[1]Language familyHarákmbut–Katukinan HarákmbutDialects Amarakaeri Watipaeri Arasaeri Pukirieri Sapiteri Kisambaeri Toyoeri Language codesISO 639-3Either:amr – Amarakaerihug – HuachipaeriGlott...
Campfire in the Redwoods by Edwin Deakin (1876), Laguna Art Museum. In North America, a campfire story is a form of oral storytelling performed around an open fire at night, typically in the wilderness, largely connected with the telling of stories having supernatural motifs or elements of urban legend. Whereas the activity is not incomparable to, nor mutually exclusive from indigenous practices, they should not be confused with each other in a contemporary context. History The modern campfir...
Rumah yang dibangun dengan balok tuf di Jerman Tuf atau batu putih (bahasa Inggris: tuff, dari bahasa Italia: tufo) adalah jenis batuan piroklastik yang mengandung debu gunung api yang dikeluarkan selama letusan gunung berapi. Setelah ejeksi dan pengendapan, abu tersebut mengalami litifikasi menjadi batuan padat.[1][2] Tuf sebenarnya sama dengan tufa. Namun, istilah tufa lebih sering digunakan di bidang konstruksi sedangkan tuf digunakan di bidang geologi. Galeri Lapis...
الطيبة الزعبية الإحداثيات 32°36′00″N 35°26′00″E / 32.6°N 35.433333333333°E / 32.6; 35.433333333333 تقسيم إداري البلد إسرائيل التقسيم الأعلى مجلس جلبوع الإقليمي خصائص جغرافية ارتفاع 95 متر عدد السكان عدد السكان 1865 (2019)[1] معلومات أخرى منطقة زمنية ت ع م+02:00...
國立新化高級工業職業學校國立新化高級工業職業學校地址712 臺南市新化區東榮里信義路54號经纬度23°02′14″N 120°19′07″E / 23.037254°N 120.318693°E / 23.037254; 120.318693邮政编码712其它名称National HsinHua Industrial Vocational High School类型技術型高級中等學校创办日期1926年 台南州立新化農業補習學校学区 中華民國臺灣臺南市新化區学校编号06-5903994教育部學校代碼1104...
Formula One motor race 2024 Monaco Grand Prix Race 8 of 24 in the 2024 Formula One World Championship← Previous raceNext race → Layout of the Circuit de Monte Carlo, MonacoRace details[1]Date 26 May 2024Official name Formula 1 Grand Prix de Monaco 2024Location Circuit de MonacoLa Condamine and Monte Carlo, MonacoCourse Street circuitCourse length 3.337 km (2.074 miles)Distance 78 laps, 260.286 km (161.772 miles)Weather SunnyPole positionDriver Charles Leclerc F...
السيد فريدمان القصير Der kleine Herr Friedemann الطبعة الأولى (1898) معلومات الكتاب المؤلف توماس مان البلد ألمانيا اللغة اللغة الألمانية الناشر S. Fischer، برلين تاريخ النشر 1898 النوع الأدبي قصة قصيرة التقديم عدد الصفحات 198 ص (الطبعة الأولى، 1898) القياس 19 سم (الطبعة الأولى، 1898) المواقع كونغرس 41...
العلاقات اليمنية السريلانكية اليمن سريلانكا اليمن سريلانكا تعديل مصدري - تعديل العلاقات اليمنية السريلانكية هي العلاقات الثنائية التي تجمع بين اليمن وسريلانكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...
MicroneurographySchematic illustration of experimental setup for recording nerve impulses from a touch afferent in the hairy skin of a human arm. A series of single unit impulses in response to a touch stimulus are shown as well as one of the impulses on expanded time scale to demonstrate impulse shape.Purposerecord the normal traffic of nerve impulses that are conducted in peripheral nerves Microneurography is a neurophysiological method employed to visualize and record the traffic of nerve ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الرابطة البرلمانية 1953–54 تفاصيل الموسم دوري إسثميان البلد المملكة المتحدة البطل نادي بروملي ا�...
Type of vehicle Unmanned redirects here. For other uses, see Unmanned (disambiguation). Various uncrewed vehicles An uncrewed vehicle or unmanned vehicle is a vehicle without a person on board. Uncrewed vehicles can either be under telerobotic control—remote controlled or remote guided vehicles—or they can be autonomously controlled—autonomous vehicles—which are capable of sensing their environment and navigating on their own. Types There are different types of uncrewed vehicles:[...
French royal and politician (1692–1740) Not to be confused with his grandson Louis Henri, Prince of Condé (1756–1830). Louis Henri Prince of Condé[1] Duke of Bourbon Grand Master of France Portrait by Pierre GobertPrince of CondéTenure4 March 1710 – 27 January 1740PredecessorLouis IIISuccessorLouis JosephFirst Minister of State In office2 December 1723 – 11 June 1726Preceded byPhilippe II, Duke of OrléansSucceeded byAndré-Hercule de Fleury Born(1692-08-18)18 Augu...
Grafico del logaritmo naturale del fattoriale In matematica, si definisce fattoriale di un numero naturale n {\displaystyle n} , indicato con n ! {\displaystyle n!} , il prodotto dei numeri interi positivi minori o uguali a tale numero. In formula: n ! := ∏ k = 1 n k = 1 ⋅ 2 ⋅ 3 ⋯ ( n − 1 ) ⋅ n {\displaystyle n!:=\prod _{k=1}^{n}k=1\cdot 2\cdot 3\cdots (n-1)\cdot n} per la convenzione del prodotto vuoto si definisce inoltre 0 ! := 1 {\displaystyle 0!:...