Kuramoto–Sivashinsky equation

A spatiotemporal plot of a simulation of the Kuramoto–Sivashinsky equation

In mathematics, the Kuramoto–Sivashinsky equation (also called the KS equation or flame equation) is a fourth-order nonlinear partial differential equation. It is named after Yoshiki Kuramoto and Gregory Sivashinsky, who derived the equation in the late 1970s to model the diffusive–thermal instabilities in a laminar flame front.[1][2][3] It was later and independently derived by G. M. Homsy[4] and A. A. Nepomnyashchii[5] in 1974, in connection with the stability of liquid film on an inclined plane and by R. E. LaQuey et. al.[6] in 1975 in connection with trapped-ion instability. The Kuramoto–Sivashinsky equation is known for its chaotic behavior.[7][8]

Definition

The 1d version of the Kuramoto–Sivashinsky equation is

An alternate form is

obtained by differentiating with respect to and substituting . This is the form used in fluid dynamics applications.[9]

The Kuramoto–Sivashinsky equation can also be generalized to higher dimensions. In spatially periodic domains, one possibility is

where is the Laplace operator, and is the biharmonic operator.

Properties

The Cauchy problem for the 1d Kuramoto–Sivashinsky equation is well-posed in the sense of Hadamard—that is, for given initial data , there exists a unique solution that depends continuously on the initial data.[10]

The 1d Kuramoto–Sivashinsky equation possesses Galilean invariance—that is, if is a solution, then so is , where is an arbitrary constant.[11] Physically, since is a velocity, this change of variable describes a transformation into a frame that is moving with constant relative velocity . On a periodic domain, the equation also has a reflection symmetry: if is a solution, then is also a solution.[11]

Solutions

A converged relative periodic orbit for the KS equation with periodic boundary conditions for a domain size . After some time the system returns to its initial state, only translated slightly (~4 units) to the left. This particular solution has three unstable directions and three marginal directions.

Solutions of the Kuramoto–Sivashinsky equation possess rich dynamical characteristics.[11][12][13] Considered on a periodic domain , the dynamics undergoes a series of bifurcations as the domain size is increased, culminating in the onset of chaotic behavior. Depending on the value of , solutions may include equilibria, relative equilibria, and traveling waves—all of which typically become dynamically unstable as is increased. In particular, the transition to chaos occurs by a cascade of period-doubling bifurcations.[13]

Modified Kuramoto–Sivashinsky equation

Dispersive Kuramoto–Sivashinsky equations

A third-order derivative term representing dispersion of wavenumbers are often encountered in many applications. The disperseively modified Kuramoto–Sivashinsky equation, which is often called as the Kawahara equation,[14] is given by[15]

where is real parameter. A fifth-order derivative term is also often included, which is the modified Kawahara equation and is given by[16]

Sixth-order equations

Three forms of the sixth-order Kuramoto–Sivashinsky equations are encountered in applications involving tricritical points, which are given by[17]

in which the last equation is referred to as the Nikolaevsky equation, named after V. N. Nikolaevsky who introudced the equation in 1989,[18][19][20] whereas the first two equations has been introduced by P. Rajamanickam and J. Daou in the context of transitions near tricritical points,[17] i.e., change in the sign of the fourth derivative term with the plus sign approaching a Kuramoto–Sivashinsky type and the minus sign approaching a Ginzburg–Landau type.

Applications

Applications of the Kuramoto–Sivashinsky equation extend beyond its original context of flame propagation and reaction–diffusion systems. These additional applications include flows in pipes and at interfaces, plasmas, chemical reaction dynamics, and models of ion-sputtered surfaces.[9][21]

See also

References

  1. ^ Kuramoto, Yoshiki (1978). "Diffusion-Induced Chaos in Reaction Systems". Progress of Theoretical Physics Supplement. 64: 346–367. doi:10.1143/PTPS.64.346. ISSN 0375-9687.
  2. ^ Sivashinsky, G.I. (1977). "Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations". Acta Astronautica. 4 (11–12): 1177–1206. doi:10.1016/0094-5765(77)90096-0. ISSN 0094-5765.
  3. ^ Sivashinsky, G. I. (1980). "On Flame Propagation Under Conditions of Stoichiometry". SIAM Journal on Applied Mathematics. 39 (1): 67–82. doi:10.1137/0139007. ISSN 0036-1399.
  4. ^ Homsy, G. M. (1974). "Model equations for wavy viscous film flow". In Newell, A. (ed.). Nonlinear Wave Motion. Lectures in Applied Mathematics. Vol. 15. Providence: American Mathematical Society. pp. 191–194. Bibcode:1974LApM...15.....N.
  5. ^ Nepomnyashchii, A. A. (1975). "Stability of wavy conditions in a film flowing down an inclined plane". Fluid Dynamics. 9 (3): 354–359. doi:10.1007/BF01025515.
  6. ^ Laquey, R. E.; Mahajan, S. M.; Rutherford, P. H.; Tang, W. M. (1975). "Nonlinear Saturation of the Trapped-Ion Mode". Physical Review Letters. 34 (7): 391–394. doi:10.1103/PhysRevLett.34.391.
  7. ^ Pathak, Jaideep; Hunt, Brian; Girvan, Michelle; Lu, Zhixin; Ott, Edward (2018). "Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach". Physical Review Letters. 120 (2): 024102. doi:10.1103/PhysRevLett.120.024102. ISSN 0031-9007. PMID 29376715.
  8. ^ Vlachas, P.R.; Pathak, J.; Hunt, B.R.; Sapsis, T.P.; Girvan, M.; Ott, E.; Koumoutsakos, P. (2020-03-21). "Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics". Neural Networks. 126: 191–217. arXiv:1910.05266. doi:10.1016/j.neunet.2020.02.016. ISSN 0893-6080. PMID 32248008. S2CID 211146609.
  9. ^ a b Kalogirou, A.; Keaveny, E. E.; Papageorgiou, D. T. (2015). "An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471 (2179): 20140932. doi:10.1098/rspa.2014.0932. ISSN 1364-5021. PMC 4528647. PMID 26345218.
  10. ^ Tadmor, Eitan (1986). "The Well-Posedness of the Kuramoto–Sivashinsky Equation". SIAM Journal on Mathematical Analysis. 17 (4): 884–893. doi:10.1137/0517063. hdl:1903/8432. ISSN 0036-1410.
  11. ^ a b c Cvitanović, Predrag; Davidchack, Ruslan L.; Siminos, Evangelos (2010). "On the State Space Geometry of the Kuramoto–Sivashinsky Flow in a Periodic Domain". SIAM Journal on Applied Dynamical Systems. 9 (1): 1–33. arXiv:0709.2944. doi:10.1137/070705623. ISSN 1536-0040. S2CID 17048798.
  12. ^ Michelson, Daniel (1986). "Steady solutions of the Kuramoto-Sivashinsky equation". Physica D: Nonlinear Phenomena. 19 (1): 89–111. doi:10.1016/0167-2789(86)90055-2. ISSN 0167-2789.
  13. ^ a b Papageorgiou, D.T.; Smyrlis, Y.S. (1991), "The route to chaos for the Kuramoto-Sivashinsky equation", Theoret. Comput. Fluid Dynamics, 3: 15–42, doi:10.1007/BF00271514, hdl:2060/19910004329, ISSN 1432-2250, S2CID 116955014
  14. ^ Topper, J.; Kawahara, T. (1978). "Approximate equations for long nonlinear waves on a viscous fluid". Journal of the Physical Society of Japan. 44 (2): 663–666. doi:10.1143/JPSJ.44.2003.
  15. ^ Chang, H. C.; Demekhin, E. A.; Kopelevich, D. I. (1993). "Laminarizing effects of dispersion in an active-dissipative nonlinear medium". Physica D: Nonlinear Phenomena. 63 (3–4): 299–320. doi:10.1016/0167-2789(93)90113-F. ISSN 1872-8022.
  16. ^ Akrivis, G., Papageorgiou, D. T., & Smyrlis, Y. S. (2012). Computational study of the dispersively modified Kuramoto–Sivashinsky equation. SIAM Journal on Scientific Computing, 34(2), A792-A813.
  17. ^ a b Rajamanickam, P.; Daou, J. (2023). "Tricritical point as a crossover between type-Is and type-IIs bifurcations". Progress in Scale Modeling. 4 (1): 2. doi:10.13023/psmij.2023.04-01-02. ISSN 2693-969X.
  18. ^ Nikolaevskii, V. N. (1989). Dynamics of viscoelastic media with internal oscillators. In Recent Advances in Engineering Science: A Symposium dedicated to A. Cemal Eringen June 20–22, 1988, Berkeley, California (pp. 210-221). Berlin, Heidelberg: Springer Berlin Heidelberg.
  19. ^ Tribelsky, M. I., & Tsuboi, K. (1996). New scenario for transition to turbulence?. Physical review letters, 76(10), 1631.
  20. ^ Matthews, P. C., & Cox, S. M. (2000). One-dimensional pattern formation with Galilean invariance near a stationary bifurcation. Physical Review E, 62(2), R1473.
  21. ^ Cuerno, Rodolfo; Barabási, Albert-László (1995). "Dynamic Scaling of Ion-Sputtered Surfaces". Physical Review Letters. 74 (23): 4746–4749. arXiv:cond-mat/9411083. doi:10.1103/PhysRevLett.74.4746. ISSN 0031-9007. PMID 10058588. S2CID 18148655.

Read other articles:

Hubungan Indonesia–Malaysia Indonesia Malaysia Hubungan antara Indonesia dan Malaysia beberapa kali mengalami pasang surut. Sebagai dua negara yang bertetangga, bahkan sering disebut negara serumpun, potensi kerjasama maupun potensi konflik antar dua negara tersebut besar. Hubungan kerjasama Galeri Melaka di Jakarta, Indonesia. Bidang pendidikan Dalam bidang pendidikan, antara Indonesia dan Malaysia menjalin hubungan dengan mengadakan pertukaran pelajar setiap tahunnya. Bidang ekonomi Bany...

 

 

Pour les articles homonymes, voir Couderc. Ericka Bareigts Ericka Bareigts en 2012. Fonctions Septième vice-présidente du conseil régional de La Réunion En fonction depuis le 28 octobre 2022(1 an, 5 mois et 5 jours) Élection 28 octobre 2022 Président Huguette Bello Prédécesseur Frédéric Maillot Conseillère régionale de La Réunion En fonction depuis le 2 juillet 2021(2 ans et 9 mois) Élection 27 juin 2021 Président Huguette Bello 22 mars 2010 – 19 jui...

 

 

Parochial, coeducational school in Perryville, , Missouri, United StatesSt. Vincent High SchoolAddress210 South Waters StreetPerryville, (Perry County), Missouri 63775United StatesCoordinates37°43′23″N 89°52′30″W / 37.72306°N 89.87500°W / 37.72306; -89.87500InformationTypeParochial, CoeducationalMottoReligio ∙ Scientia ∙ Cultura(Religion ∙ Knowledge ∙ Culture)Religious affiliation(s)Roman CatholicPatron saint(s)St. Vincent DePaulEstablished1896Super...

Marisol Touraine Menteri Urusan Sosial PrancisPetahanaMulai menjabat 16 Mei 2012PresidenFrançois HollandePerdana MenteriJean-Marc AyraultManuel Valls PendahuluRoselyne BachelotPenggantiPetahana Informasi pribadiLahir7 Maret 1959 (umur 65)Paris, PrancisKebangsaanPrancisPartai politikPartai SosialisAlma materÉcole Normale SupérieureSunting kotak info • L • B Marisol Touraine (pengucapan bahasa Prancis: [ma.ʁi.sɔl tu.ʁɛn]; kelahiran 7 Maret 1959) adalah seorang...

 

 

Filipe Luís Filipe Luís bermain untuk Chelsea pada 2014Informasi pribadiNama lengkap Filipe Luís KasmirskiTanggal lahir 9 Agustus 1985 (umur 38)Tempat lahir Jaraguá do Sul, BrasilTinggi 1,82 m (5 ft 11+1⁄2 in)[1]Posisi bermain Bek kiriInformasi klubKlub saat ini Atlético MadridNomor 3Karier junior1995–2003 FigueirenseKarier senior*Tahun Tim Tampil (Gol)2003–2005 Figueirense 22 (1)2005–2008 Rentistas 0 (0)2005–2006 → Real Madrid B (pinjaman) 37...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Maha Sarakham – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini bukan mengenai Provinsi Maha Sarakham. Maha Sarakham มหาสารคามKotaUniversitas MahasarakhamNegara Thail...

Protein-coding gene in the species Homo sapiens PLOD3IdentifiersAliasesPLOD3, LH3, procollagen-lysine,2-oxoglutarate 5-dioxygenase 3External IDsOMIM: 603066 MGI: 1347008 HomoloGene: 843 GeneCards: PLOD3 Gene location (Human)Chr.Chromosome 7 (human)[1]Band7q22.1Start101,205,977 bp[1]End101,218,420 bp[1]Gene location (Mouse)Chr.Chromosome 5 (mouse)[2]Band5 G2|5 76.09 cMStart137,015,873 bp[2]End137,025,502 bp[2]RNA expression patternBgeeHumanM...

 

 

American college basketball season This article is about 2016–17 Pitt men's basketball. For 2016–17 Pitt women's basketball, see 2016–17 Pittsburgh Panthers women's basketball team. 2016–17 Pittsburgh Panthers men's basketballConferenceAtlantic Coast ConferenceRecord16–17 (4–14 ACC)Head coachKevin Stallings (1st season)Assistant coaches Tom Richardson (1st season) Kevin Sutton (1st season) Jeremy Ballard (1st season) Home arenaPetersen Events Center(Capacity: 12,508)Seas...

 

 

Law school Polytechnic University of the PhilippinesCollege of LawSeal of the College of LawTypeState law schoolEstablished2001DeanGemy Lito L. FestinLocationManila, Philippines14°35′52″N 121°00′35″E / 14.59778°N 121.00972°E / 14.59778; 121.00972CampusUrbanColors  Maroon and GoldWebsitewww.pup.edu.ph/CL The Polytechnic University of the Philippines College of Law, abbreviated as CL, is the law school of the Polytechnic University of the Philippine...

此條目没有列出任何参考或来源。 (2013年2月8日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 莱奥波尔多·加尔铁里Leopoldo Fortunato Galtieri Castelli 阿根廷总统(實質)任期1981年12月22日—1982年6月18日副总统Víctor Martínez前任卡洛斯·拉科斯特继任阿尔弗雷多·奥斯卡·圣琼 个人资料出生(1926-07-15)1926�...

 

 

Come leggere il tassoboxTurdus Turdus philomelos Classificazione scientifica Dominio Eukaryota Regno Animalia Sottoregno Eumetazoa Phylum Chordata Subphylum Vertebrata Superclasse Tetrapoda Classe Aves Sottoclasse Neornithes Superordine Neognathae Ordine Passeriformes Sottordine Oscines Infraordine Passerida Superfamiglia Muscicapoidea Famiglia Turdidae Genere TurdusLinnaeus, 1758 Specie vedi testo Turdus Linnaeus, 1758 è un genere di uccelli passeriformi della famiglia dei Turdidi[1 ...

 

 

National Film Award for Best DirectorThe 2022 recipient: Rubaiyat HossainAwarded forExcellence in cinematic achievements for Bangladeshi cinemaSponsored byGovernment of BangladeshLocationDhakaCountryBangladeshPresented byMinistry of InformationFirst awarded1975 (1st)Last awarded2022 (47th)Currently held byRubaiyat HossainHighlightsMost awardsA. J. Mintu(4 awards)First winnerNarayan Ghosh Mita (1975)Websitemoi.gov.bd National Film Award for Best Director (Bengali: জাতীয় চলচ...

Town in Murmansk Oblast, Russia For other places with the same name, see Kirovsk. Town in Murmansk Oblast, RussiaKirovsk КировскTown[1]View of Kirovsk Coat of armsLocation of Kirovsk KirovskLocation of KirovskShow map of RussiaKirovskKirovsk (Murmansk Oblast)Show map of Murmansk OblastCoordinates: 67°37′N 33°39′E / 67.617°N 33.650°E / 67.617; 33.650CountryRussiaFederal subjectMurmansk Oblast[1]Founded1929Town status sinceOctober 30, ...

 

 

Castellar Guidobono komune di Italia Tempat Negara berdaulatItaliaDaerah di ItaliaPiemonteProvinsi di ItaliaProvinsi Alessandria NegaraItalia Ibu kotaCastellar Guidobono PendudukTotal401  (2023 )GeografiLuas wilayah2,48 km² [convert: unit tak dikenal]Ketinggian144 m Berbatasan denganCasalnoceto Viguzzolo Volpeglino SejarahHari liburpatronal festival Santo pelindungCajetan Informasi tambahanKode pos15050 Zona waktuUTC+1 UTC+2 Kode telepon0131 ID ISTAT006046 Kode kadaster ItaliaC142 ...

 

 

American heptathlete DeDee Nathan Medal record Women’s Heptathlon Representing  United States Pan American Games 1991 Havana Heptathlon 1995 Mar del Plata Heptathlon LeShundra DeDee Nathan (born April 20, 1968, in Birmingham, Alabama) is a retired heptathlete from the United States, who won the gold medal at the 1991 Pan American Games in Havana, Cuba. She is a two-time U.S. champion (2000 and 2001) and the 1999 World Indoor pentathlon gold medalist. She attended high school at South S...

Sleping BeautyLogo filmDiciptakan olehDisneyKarya asliSleeping Beauty (1959) Maleficent (2014)Film dan televisiFilm Sleeping Beauty (1959) Maleficent (film) (2014) Maleficent: Mistress of Evil (2019) Seri televisi House of Mouse (2000) Once Upon a Time (2010) Acara televisi spesial Descendants (2015) Descendants 2 (2017) Pertunjukkan teaterMusikalSleeping Beauty: The MusicalPermainanPermainan video Maleficent free fall (2014) Disney Infinity (2013)* AudioLagu tema Sleeping Beauty (1959) Malef...

 

 

Monetary system This article is about the monetary standard. For the standards of millesimal fineness for the silver alloy used in the manufacture or crafting of silver objects, see Silver standards. The Spanish silver dollar created a global silver standard from the 16th to 19th centuries. The silver standard[a] is a monetary system in which the standard economic unit of account is a fixed weight of silver. Silver was far more widespread than gold as the monetary standard worldwide, ...

 

 

Legislation intending to ban abortions after the conceptus' heartbeat can be detected Parts of this article (those related to Table) need to be updated. The reason given is: Ohio constitutional amendment. Please help update this article to reflect recent events or newly available information. (November 2023) A six-week abortion ban, also called a fetal heartbeat bill by proponents, is a law in the United States which makes abortion illegal as early as six weeks gestational age (two weeks afte...

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)   Cari berdasarkan nilai Glottolog   Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman rumpun acak Rumpun bahasaBahasa Gallo-Italik Bahasa Gallo-ItaliaPersebaranItalia, San Marino, Swiss, Monako, PrancisPenggolongan bahasaIndo-EropaItalikRomanItalo-BaratGallo-RomanBahasa Gallo-Italik Bahasa Piemonte Bahasa Liguria Bahasa Lombard Bahasa Emilian-Romagnol (Bahasa Venesia)[1][2] Bahasa Ga...

 

 

إلفنتين   معلومات جغرافية الإحداثيات 24°05′N 32°53′E / 24.09°N 32.89°E / 24.09; 32.89   المسطح المائي نهر النيل  أعلى ارتفاع (م) 101 متر[1]  الحكومة البلد مصر  التقسيم الإداري محافظة أسوان  معلومات إضافية المنطقة الزمنية ت ع م+01:00  تعديل مصدري - تعديل   الجزي...