Kummer sum

In mathematics, Kummer sum is the name given to certain cubic Gauss sums for a prime modulus p, with p congruent to 1 modulo 3. They are named after Ernst Kummer, who made a conjecture about the statistical properties of their arguments, as complex numbers. These sums were known and used before Kummer, in the theory of cyclotomy.

Definition

A Kummer sum is therefore a finite sum

taken over r modulo p, where χ is a Dirichlet character taking values in the cube roots of unity, and where e(x) is the exponential function exp(2πix). Given p of the required form, there are two such characters, together with the trivial character.

The cubic exponential sum K(n,p) defined by

is easily seen to be a linear combination of the Kummer sums. In fact it is 3P where P is one of the Gaussian periods for the subgroup of index 3 in the residues mod p, under multiplication, while the Gauss sums are linear combinations of the P with cube roots of unity as coefficients. However it is the Gauss sum for which the algebraic properties hold. Such cubic exponential sums are also now called Kummer sums.

Statistical questions

It is known from the general theory of Gauss sums that

In fact the prime decomposition of G(χ) in the cyclotomic field it naturally lies in is known, giving a stronger form. What Kummer was concerned with was the argument

of G(χ). Unlike the quadratic case, where the square of the Gauss sum is known and the precise square root was determined by Gauss, here the cube of G(χ) lies in the Eisenstein integers, but its argument is determined by that of the Eisenstein prime dividing p, which splits in that field.

Kummer made a statistical conjecture about θp and its distribution modulo 2π (in other words, on the argument of the Kummer sum on the unit circle). For that to make sense, one has to choose between the two possible χ: there is a distinguished choice, in fact, based on the cubic residue symbol. Kummer used available numerical data for p up to 500 (this is described in the 1892 book Theory of Numbers by George B. Mathews). There was, however, a 'law of small numbers' operating, meaning that Kummer's original conjecture, of a lack of uniform distribution, suffered from a small-number bias. In 1952 John von Neumann and Herman Goldstine extended Kummer's computations, on ENIAC.[1] The calculations were programmed and coded by Hedvig Selberg but her work was only acknowledged at the end of the paper, similarly as with Mary Tsingou on the Fermi–Pasta–Ulam–Tsingou problem (formerly the Fermi–Pasta–Ulam problem).

In the twentieth century, progress was finally made on this question, which had been left untouched for over 100 years. Building on work of Tomio Kubota, S. J. Patterson and Roger Heath-Brown in 1978 disproved Kummer conjecture and proved a modified form of Kummer conjecture.[2] In fact they showed that there was equidistribution of the θp. This work involved automorphic forms for the metaplectic group, and Vaughan's lemma in analytic number theory. In 2000 further refinements were attained by Heath-Brown.[3]

Cassels' conjecture

A second conjecture on Kummer sums was made by J. W. S. Cassels, again building on previous ideas of Tomio Kubota. This was a product formula in terms of elliptic functions with complex multiplication by the Eisenstein integers.[4] The conjecture was proved in 1978 by Charles Matthews.[5]

Patterson's conjecture

In 1978 Patterson conjectured that θp was equidistributed with error term asymptotically of order instead of quadratic as with Gauss sums which could explain the initial bias observed by Kummer.[6] Next year his subsequent work with Heath-Brown disproving Kummer's conjecture showed that in fact it was equidistributed, but whether the order of the asymptotic was correct remained unknown.[7] More than 20 years later, Heath-Brown closed on the problem, giving a new sieve method, and conjectured that it could be improved to obtain the predicted order.[8] In 2021 the problem was demonstrated conditionally on the generalized Riemann hypothesis by Alexander Dunn and Maksym Radziwill, who also showed that the sieve of Heath Brown could not be improved as expected.[9][10]

References

  1. ^ von Neumann, John; Goldstine, Herman H. (1953). "A Numerical Study of a Conjecture of Kummer". Mathematics of Computation. 7 (42): 133–134. doi:10.1090/S0025-5718-1953-0055784-0. MR 0055784.
  2. ^ Heath-Brown, D. Roger; Patterson, Samuel James (1979). "The distribution of Kummer sums at prime arguments". Journal für die reine und angewandte Mathematik. 1979 (310): 111–130. doi:10.1515/crll.1979.310.111. MR 0546667. S2CID 122636972.
  3. ^ Heath-Brown, D. R. (2000). "Kummer's conjecture for cubic Gauss sums". Israel Journal of Mathematics. 120: part A, 97–124. CiteSeerX 10.1.1.215.8362. doi:10.1007/s11856-000-1273-y. MR 1815372.
  4. ^ Cassels, J. W. S. (1970). "On Kummer sums". Proceedings of the London Mathematical Society. Series 3. 21: 19–27. doi:10.1112/plms/s3-21.1.19. MR 0266895.
  5. ^ Matthews, Charles R. (1979). "Gauss sums and elliptic functions. I. The Kummer sum". Inventiones Mathematicae. 52 (2): 163–185. Bibcode:1979InMat..52..163M. doi:10.1007/BF01403063. MR 0536079.
  6. ^ Patterson, S. J. (1978). "On the distribution of Kummer sums". Journal für die reine und angewandte Mathematik. 0303_0304: 126–143. ISSN 0075-4102.
  7. ^ Heath-Brown, D. Roger; Patterson, Samuel James (1979). "The distribution of Kummer sums at prime arguments". Journal für die reine und angewandte Mathematik. 1979 (310): 111–130. doi:10.1515/crll.1979.310.111. MR 0546667. S2CID 122636972.
  8. ^ Heath-Brown, D. R. (2000). "Kummer's conjecture for cubic Gauss sums". Israel Journal of Mathematics. 120: part A, 97–124. CiteSeerX 10.1.1.215.8362. doi:10.1007/s11856-000-1273-y. MR 1815372.
  9. ^ Dunn, Alexander; Radziwiłł, Maksym (2021-09-15). "Bias in cubic Gauss sums: Patterson's conjecture". arXiv:2109.07463 [math.NT].
  10. ^ Sloman, Leila (2022-08-15). "A Numerical Mystery From the 19th Century Finally Gets Solved". Quanta Magazine. Retrieved 2022-08-17.

Read other articles:

American animated science fiction television series from 1973 to 1974 This article is about the 1970s animated cartoon TV show. For other animated Star Trek series, see List of Star Trek television series. Star Trek: The Animated SeriesGenre Animation Adventure Science fiction Created byGene RoddenberryDirected by Hal Sutherland (season 1) Bill Reed (season 2) Voices of William Shatner Leonard Nimoy DeForest Kelley James Doohan Nichelle Nichols George Takei Majel Barrett Composers Yvette Blai...

 

Historic site in Haywood County, North Carolina United States historic placeGreen Hill CemeteryU.S. National Register of Historic Places William Thomas Crawford grave at Green Hill CemeteryLocationGolden Drive, Waynesville, North CarolinaCoordinates35°29′1″N 82°59′27″W / 35.48361°N 82.99083°W / 35.48361; -82.99083NRHP reference No.100000897Added to NRHPJune 1, 2018 Green Hill Cemetery is a historic cemetery located in Waynesville, North Carolina, ...

 

Chinese hurdler (born 1991) Wu Shuijiao Wu at the 2015 World Championships Medal record Women's athletics Representing  China East Asian Games 2013 Tianjin 100 m hurdles Asian Indoor Championships 2012 Guangzhou 100 m hurdles Wu Shuijiao (simplified Chinese: 吴水娇; traditional Chinese: 吳水娇; pinyin: Wú Shuǐjiāo; born 19 June 1991 in Xinyi) is a female Chinese track and field athlete who competes in hurdling. Her personal best for the 100 metres hurdles is 12.93 se...

Voce principale: Reggina 1914. Associazione Sportiva RegginaStagione 1946-1947Sport calcio Squadra Reggina Allenatore Luigi Rossetto Presidente Francesco Romeo Serie C3º posto girone C Lega Sud 1945-1946 1947-1948 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti l'Associazione Sportiva Reggina nelle competizioni ufficiali della stagione 1946-1947. Indice 1 Stagione 2 Rosa 3 Risultati 3.1 Serie C 3.1.1 Girone di andata 3.1.2 Girone di ritorno 3.1.3 Spare...

 

Football clubWhitchurch UnitedFull nameWhitchurch United Football ClubNickname(s)The Jam BoysFounded1903GroundLongmeadow, WhitchurchCapacity1,500ManagerMartin WilliamsLeagueWessex League Division One2022–23Wessex League Division One, 16th of 20 Home colours Away colours Whitchurch United F.C. is an English football club based in Whitchurch, Hampshire. The club has senior teams in the Wessex League Division One and play at Longmeadow Sports Centre. The Club has a youth section with teams fo...

 

2015 studio album by DJ KhaledI Changed a LotStudio album by DJ KhaledReleasedOctober 23, 2015 (2015-10-23)Recorded2014–2015GenreHip hopLength51:08LabelWe the BestREDProducerDJ Khaled (also exec.)BkornDanjaEvan PowellLDBLee on the BeatsMike ZombieNBA 2K16OZReazy RenegadeScott StorchStreetRunnerTarik AzzouzThe Beat BullyThe ExclusivesThe MekanicsThe YoungstarsDJ Khaled chronology Suffering from Success(2013) I Changed a Lot(2015) Major Key(2016) Deluxe edition cover S...

Paradoxurus Paradoxurus zeylonensis Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Carnivora Subordo: Feliformia Famili: Viverridae Subfamili: Paradoxurinae Genus: ParadoxurusCuvier, 1822 Spesies Lihat teks Peta persebaran genus Paradoxurus Paradoxurus adalah genus dari spesies Musang dalam famili Viverridae yang didenominasikan dan pertama kali dideskripsikan oleh Frédéric Cuvier pada tahun 1822.[1] Spesies anggotanya memiliki kepala lebar, moncong sem...

 

普密蓬·阿杜德ภูมิพลอดุลยเดช泰国先王普密蓬·阿杜德(官方肖像) 泰國國王統治1946年6月9日-2016年10月13日(70年126天)加冕1950年5月5日前任阿南塔玛希敦繼任玛哈·哇集拉隆功总理见列表出生(1927-12-05)1927年12月5日 美國马萨诸塞州剑桥奥本山醫院(英语:Mount Auburn Hospital)逝世2016年10月13日(2016歲—10—13)(88歲) 泰國曼谷西里拉醫院安葬曼谷僧...

 

Americans of Chinese ancestry Chinese-born American redirects here. For people with American birthright citizenship born in China, see Americans in China. Not to be confused with American-born Chinese or American Chinese. Chinese Americans華裔美國人 / 华裔美国人Percentage of Chinese Americans per state as of the 2010 United States censusTotal population5,238,790 (2021)[1]1.58% of the total U.S. population (2021)Regions with significant populationsNew York metropolitan areaGr...

Khalil Housni Nazionalità  Egitto Calcio Ruolo Attaccante CarrieraSquadre di club1 1920-1924 Al-Ahly? (?)Nazionale 1920-1924 Egitto0+ (0+) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Khalil Housni (in arabo خليل حسنى‎?; ... – ...; fl. XX secolo) è stato un calciatore egiziano, di ruolo attaccante. Indice 1 Carriera ...

 

Polish politician and MEP, Co-chairman of the European Conservatives and Reformists Ryszard LegutkoLegutko in 2020Co-chairman of the European Conservatives and ReformistsHead of the Polish Law and Justice Delegation to the European ParliamentIncumbentAssumed office 11 December 2011Serving alongsideJorge BuxadéMinister of National EducationIn office13 August 2007 – 16 November 2007PresidentLech KaczyńskiPrime MinisterJarosław KaczyńskiPreceded byRoman GiertychSucceeded byKat...

 

Post-split Iraqi Ba'athist political party This article is about the branch that controlled Iraq. For the pan-Arab Ba'ath Party, which is Iraqi-led but has branches in multiple countries, see Ba'ath Party (Iraqi-dominated faction). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is missing information about the party's activities after 2012. Please expand the article to inclu...

Questa voce o sezione sull'argomento Storia è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Pagina in minuscola carolina La rinascita carol...

 

Prime7Logo Prime7Diluncurkan17 Maret 1962PemilikPrime Media GroupSloganGottaLoveIt on Prime7NegaraAustraliaBahasaInggrisSaluran seindukTV4ME Ishop tvSitus webprime7.com.au Prime7 adalah stasiun televisi Australia yang didirikan oleh Prime Media Group Limited. Prime Television diluncurkan pada tanggal 17 Maret 1962 sebagai CBN/CWN di Orange dan Dubbo, New South Wales, dan sejak itu telah diperluas untuk mencakup daerah New South Wales, Victoria dan Wilayah Ibu Kota Australia sebagai afiliasi S...

 

American actress (born 1964) Calista FlockhartFlockhart in 2009BornCalista Kay Flockhart (1964-11-11) November 11, 1964 (age 59)Freeport, Illinois, U.S.Alma materRutgers University, New Brunswick (BFA)OccupationActressYears active1989–presentKnown forAlly McBealBrothers & SistersA Midsummer Night's DreamSupergirlThe BirdcageSpouse Harrison Ford ​(m. 2010)​Children1 Calista Kay Flockhart (born November 11, 1964)[1][2] is an...

Liga dos Campeões da UEFA de 1996–97 XLII UEFA Champions League Dados Participantes 24 Organização UEFA Local de disputa Europa Período 7 de agosto de 1996 – 28 de maio de 1997 Gol(o)s 215 Partidas 77 Média 2,79 gol(o)s por partida Campeão  Borussia Dortmund (1º título)[1] Vice-campeão  Juventus Melhor marcador YUG Milinko Pantić (Atlético de Madrid) – 5 gols Maiores goleadas (diferença) Grasshopper 5 – 0 Slavia PragaEstádio Hardturm, Zurique7 de agosto, F...

 

  لمعانٍ أخرى، طالع أمان الله خان (توضيح). ملك أفغانستان أمان الله خان (بالفارسية: شاه امان‌الله خان)‏  ملك أفغانستان فترة الحكم28 فبراير 1919 - 14 جانفي 1929 نصر الله خان عناية الله خان مرافق ثريا طرزي معلومات شخصية الميلاد 1 يوينو, 1892بغمان، أفغانستان الوفاة 25 أبريل 1960 (67 سن...

 

Cet article est une ébauche concernant la politique mexicaine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Vice-président de la république fédérale des États-Unis mexicains Emblème du Mexique(1893-1916) José María Pino Suárez,dernier vice-président de la République (1911-1913). Création 10 octobre 1824 Abrogation 19 février 1913 Premier titulaire Nicolás Bravo Rueda Dernier titulaire José Mar...

Parliament of the Republic of Turkey Grand National Assembly of Turkey Türkiye Büyük Millet Meclisi28th Parliament of TurkeySeal of the Turkish ParliamentTypeTypeUnicameral HistoryFounded23 April 1920 (104 years ago) (1920-04-23)Preceded by23 December 1876 as General AssemblyLeadershipSpeakerNuman Kurtulmuş, AK Party since 7 June 2023 Deputy SpeakersBekir Bozdağ, AK PartyGülizar Biçer Karaca, CHPCelal Adan, MHPSırrı Süreyya Önder, DEM Party Government Group L...

 

Italian-American economist (1918–2003) Franco ModiglianiModigliani in 2000Born(1918-06-18)18 June 1918Rome, ItalyDied25 September 2003(2003-09-25) (aged 85)Cambridge, Massachusetts, U.S.CitizenshipItalyUnited StatesAcademic careerFieldFinancial economicsAlma materThe New School (PhD) Sapienza University of Rome (Laurea)DoctoraladvisorJacob MarschakDoctoralstudentsAlbert AndoRobert ShillerMario DraghiLucas PapademosInfluencesJ. M. Keynes, Jacob MarschakContributionsModigliani–Mil...