Khulna-6
|
Read other articles:
Balapulang KulonDesaNegara IndonesiaProvinsiJawa TengahKabupatenTegalKecamatanBalapulangKode pos52464Kode Kemendagri33.28.04.2019 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Balapulang Kulon adalah salah satu desa di Kecamatan Balapulang, Tegal, Jawa Tengah, Indonesia dan merupakan ibu kota dari kecamatan tersebut. Pada masa pemerintahan Hindia Belanda pernah berdirilah Pabrik Gula Balapulang di wilayah ini yang merupakan salah satu penghasil sentral gula pada masa itu, tet...
陆军第十四集团军炮兵旅陆军旗存在時期1950年 - 2017年國家或地區 中国效忠於 中国 中国共产党部門 中国人民解放军陆军種類炮兵功能火力支援規模约90门火炮直屬南部战区陆军參與戰役1979年中越战争 中越边境冲突 老山战役 成都军区对越轮战 紀念日10月25日 陆军第十四集团军炮兵旅(英語:Artillery Brigade, 14th Army),是曾经中国人民解放军陆军第十四集团军下属�...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 111th Infantry Regiment United States – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) 111th Infantry RegimentCoat of armsActive1747[1]AllegianceCommonwealth of PennsylvaniaBranchAr...
List of notable people from Arkansas, United States This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libe...
American comic strips This article is about the comic strip. For the baseball player nicknamed Ozark Ike, see Gus Zernial. Ozark IkeRay Gotto's Ozark Ike (December 21, 1947)Author(s)Ray GottoCurrent status/scheduleConcludedLaunch dateNovember 12, 1945End dateSeptember 14, 1958Syndicate(s)King Features SyndicateGenre(s)Humor Ozark Ike is a newspaper comic strip about dumb but likable Ozark Ike McBatt, a youth from a rural area in the mountains. The strip was created by Rufus A. (Ray) Gotto whi...
Location of Rockland County in New York Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) List of the National Register of Historic Places listings in Rockland County, New York This is intended to be a complete list of properties and districts listed on the National Register of Historic Places in Rockland County, New York. The locations of National Register properties and districts (at least for al...
Italian racing cyclist Roberto FerrariPersonal informationFull nameRoberto FerrariBorn (1983-03-09) 9 March 1983 (age 41)Gavardo, ItalyHeight1.73 m (5 ft 8 in)Weight70 kg (154 lb; 11 st 0 lb)Team informationCurrent teamRetiredDisciplineRoadRoleRiderRider typeSprinterAmateur teams2002Colibrì2003–2004L'Edile2005–2006U.C. Trevigiani–Dynamon2006Team Tenax (stagiaire) Professional teams2007Team Tenax2008–2009LPR Brakes–Ballan2010De ...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2014). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? ...
Disambiguazione – Se stai cercando il quasi omonimo scultore, vedi Giovan Francesco Rustici. La Maddalena (Fondazione Cariplo) Francesco Rustici detto Il Rustichino (Siena, 1592 – 1626) è stato un pittore italiano. Indice 1 Biografia 2 Opere 3 Bibliografia 4 Altri progetti 5 Collegamenti esterni Biografia Allievo del padre Vincenzo, si avvicinò più tardi a modelli di matrice caravaggesca, caratterizzati dal gioco luministico delle visioni notturne - in uno stile pittorico noto come te...
South African politician The HonourableAthol TrollipProvincial Chairman of ActionSAin Eastern CapeIncumbentAssumed office 9 February 2022LeaderHerman MashabaFederal Chairperson of the Democratic AllianceIn office10 May 2015 – 23 October 2019Preceded byWilmot JamesSucceeded byIvan Meyer (interim)Mayor of Nelson Mandela BayIn office18 August 2016 – 27 August 2018DeputyMongameli BobaniPreceded byDanny JordaanSucceeded byMongameli BobaniMember of Eastern Cape Provincial ...
US-based pharmaceutical company ISTA Pharmaceuticals, Inc.Company typeSubsidiaryIndustryPharmaceuticalsFounded1992HeadquartersIrvine, CaliforniaKey peopleVicente Anido Jr., Ph.D.(President, Chief Executive Officer)Glenn E. Davis(Vice President, Chief Compliance Officer)Marvin J. Garrett(Vice President, Regulatory Affairs, Quality & Compliance)Kathleen McGinley(Vice President, Human Resources & Corporate Services)ProductsBromday, Bepreve, Xibrom, Istalol, VitraseWebsitewww.istavision.c...
Intermediate appellate court of Wisconsin Court of Appeals of WisconsinEstablishedAugust 1978Jurisdiction WisconsinLocationMilwaukee (District I)Waukesha (District II) Wausau (District III)Madison (District IV)Composition methodNon-partisan election from within judicial districtAuthorized byWis. Const. Art VII § 5Wis. Stats. Chapter 752Appeals toSupreme Court of WisconsinAppeals fromWisconsin circuit courtsJudge term lengthSix yearsNumber of positions16Websitewww.wicourts.gov/courts/app...
Disambiguazione – Se stai cercando l'omonimo cestista, vedi David Graham (cestista). David GrahamNazionalità Australia Altezza180 cm Peso79 kg Tennis Carriera Singolare1 Vittorie/sconfitte 1-2 Titoli vinti 0 Miglior ranking 324º (3 gennaio 1983) Risultati nei tornei del Grande Slam Australian Open 1T (1982) Roland Garros Wimbledon US Open Doppio1 Vittorie/sconfitte 100-126 Titoli vinti 2 Miglior ranking 46º (2 gennaio 1984) Risultati nei tornei del Grande Sl...
Michael Freedman, a Berkeley, nel 1973 Medaglia Fields nel 1986 Michael Hartley Freedman (Los Angeles, 21 aprile 1951) è un matematico statunitense, vincitore della Medaglia Fields, nel 1986, per i suoi contributi nella topologia in dimensione bassa. Lavora per la Microsoft in un gruppo di ricerca sui computer quantistici. Indice 1 Biografia 2 Bibliografia 3 Altri progetti 4 Collegamenti esterni Biografia Freedman sostiene il suo PhD in matematica nella Università di Princeton nel 1973 sott...
Italian writer and politician (1922–2007) Luigi MeneghelloBorn(1922-02-16)16 February 1922Malo, ItalyDied26 June 2007(2007-06-26) (aged 85)Thiene, ItalyOccupationnovelist, essayist, academicNationalityItalianPeriod1963–2004Subjectrecent Italian history, the Italian Resistance, teachingLuigi Meneghello (16 February 1922 – 26 June 2007) was an Italian contemporary writer and scholar. Biography Luigi Meneghello was born in Malo, a small town in the countryside near Vicenza, on 16 ...
1937 film They Won't ForgetDirected byMervyn LeRoy (credited as A Mervyn LeRoy Production)Written byRobert RossenAben KandelBased onDeath in the Deep South1936 novelby Ward GreeneProduced byMervyn LeRoyJack L. WarnerStarringClaude RainsGloria DicksonEdward NorrisLana TurnerCinematographyArthur EdesonEdited byThomas RichardsMusic byAdolph DeutschProductioncompanyWarner Bros.Distributed byWarner Bros.Release date July 14, 1937 (1937-07-14) Running time95 minutesCountryUnited Stat...
この記事のほとんどまたは全てが唯一の出典にのみ基づいています。 他の出典の追加も行い、記事の正確性・中立性・信頼性の向上にご協力ください。出典検索?: 南原宏治 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2017年1月) なんばら こうじ南原 宏治本名 伍井 卯和二(いつい うわじ�...
この記事はカテゴライズされていないか、不十分です。 適切なカテゴリを追加して、記事内容を向上させてください。(2024年7月) コダチヤハズカズラ コダチヤハズカズラの花 分類(APG IV) 界 : 植物界 Plantae 階級なし : 被子植物 angiosperms 階級なし : 真正双子葉類 eudicots 階級なし : コア真正双子葉類 core eudicots 階級なし : キク類 asterids 階級なし : シソ類 lamiids 目 : シ�...
Queen of the United Kingdom and Hanover from 1830 to 1837 Queen Adelaide redirects here. For other uses, see Queen Adelaide (disambiguation). For the later princess of the same birth name, see Princess Adalbert of Prussia. Adelaide of Saxe-MeiningenPortrait by Sir William Beechey, c. 1831Queen consort of the United Kingdom and HanoverTenure26 June 1830 – 20 June 1837Coronation8 September 1831Born(1792-08-13)13 August 1792Meiningen, Saxe-Meiningen, Holy Roman EmpireDied2 Dece...
Knot that is not equivalent to its mirror image In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image (when identical while reversed). An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible. There are only five knot symmetry types, indicated by chirali...