Share to: share facebook share twitter share wa share telegram print page

Künneth theorem

In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.

A Künneth theorem or Künneth formula is true in many different homology and cohomology theories, and the name has become generic. These many results are named for the German mathematician Hermann Künneth.

Singular homology with coefficients in a field

Let X and Y be two topological spaces. In general one uses singular homology; but if X and Y happen to be CW complexes, then this can be replaced by cellular homology, because that is isomorphic to singular homology. The simplest case is when the coefficient ring for homology is a field F. In this situation, the Künneth theorem (for singular homology) states that for any integer k,

.

Furthermore, the isomorphism is a natural isomorphism. The map from the sum to the homology group of the product is called the cross product. More precisely, there is a cross product operation by which an i-cycle on X and a j-cycle on Y can be combined to create an -cycle on ; so that there is an explicit linear mapping defined from the direct sum to .

A consequence of this result is that the Betti numbers, the dimensions of the homology with coefficients, of can be determined from those of X and Y. If is the generating function of the sequence of Betti numbers of a space Z, then

Here when there are finitely many Betti numbers of X and Y, each of which is a natural number rather than , this reads as an identity on Poincaré polynomials. In the general case these are formal power series with possibly infinite coefficients, and have to be interpreted accordingly. Furthermore, the above statement holds not only for the Betti numbers but also for the generating functions of the dimensions of the homology over any field. (If the integer homology is not torsion-free, then these numbers may differ from the standard Betti numbers.)

Singular homology with coefficients in a principal ideal domain

The above formula is simple because vector spaces over a field have very restricted behavior. As the coefficient ring becomes more general, the relationship becomes more complicated. The next simplest case is the case when the coefficient ring is a principal ideal domain. This case is particularly important because the integers are a PID.

In this case the equation above is no longer always true. A correction factor appears to account for the possibility of torsion phenomena. This correction factor is expressed in terms of the Tor functor, the first derived functor of the tensor product.

When R is a PID, then the correct statement of the Künneth theorem is that for any topological spaces X and Y there are natural short exact sequences

Furthermore, these sequences split, but not canonically.

Example

The short exact sequences just described can easily be used to compute the homology groups with integer coefficients of the product of two real projective planes, in other words, . These spaces are CW complexes. Denoting the homology group by for brevity's sake, one knows from a simple calculation with cellular homology that

,
,
for all other values of i.

The only non-zero Tor group (torsion product) which can be formed from these values of is

.

Therefore, the Künneth short exact sequence reduces in every degree to an isomorphism, because there is a zero group in each case on either the left or the right side in the sequence. The result is

and all the other homology groups are zero.

The Künneth spectral sequence

For a general commutative ring R, the homology of X and Y is related to the homology of their product by a Künneth spectral sequence

In the cases described above, this spectral sequence collapses to give an isomorphism or a short exact sequence.

Relation with homological algebra, and idea of proof

The chain complex of the space X × Y is related to the chain complexes of X and Y by a natural quasi-isomorphism

For singular chains this is the theorem of Eilenberg and Zilber. For cellular chains on CW complexes, it is a straightforward isomorphism. Then the homology of the tensor product on the right is given by the spectral Künneth formula of homological algebra.[1]

The freeness of the chain modules means that in this geometric case it is not necessary to use any hyperhomology or total derived tensor product.

There are analogues of the above statements for singular cohomology and sheaf cohomology. For sheaf cohomology on an algebraic variety, Alexander Grothendieck found six spectral sequences relating the possible hyperhomology groups of two chain complexes of sheaves and the hyperhomology groups of their tensor product.[2]

Künneth theorems in generalized homology and cohomology theories

There are many generalized (or "extraordinary") homology and cohomology theories for topological spaces. K-theory and cobordism are the best-known. Unlike ordinary homology and cohomology, they typically cannot be defined using chain complexes. Thus Künneth theorems can not be obtained by the above methods of homological algebra. Nevertheless, Künneth theorems in just the same form have been proved in very many cases by various other methods. The first were Michael Atiyah's Künneth theorem for complex K-theory and Pierre Conner and Edwin E. Floyd's result in cobordism.[3][4] A general method of proof emerged, based upon a homotopical theory of modules over highly structured ring spectra.[5][6] The homotopy category of such modules closely resembles the derived category in homological algebra.

References

  1. ^ See final chapter of Mac Lane, Saunders (1963), Homology, Berlin: Springer, ISBN 0-387-03823-X
  2. ^ Grothendieck, Alexander; Dieudonné, Jean (1963), "Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): III. Étude cohomologique des faisceaux cohérents, Seconde partie", Publications Mathématiques de l'IHÉS, 17: 5–91, archived from the original on 2016-04-19, retrieved 2008-07-29 (EGA III2, Théorème 6.7.3.).
  3. ^ Atiyah, Michael F. (1967), K-theory, New York: W. A. Benjamin
  4. ^ Conner, Pierre E.; Floyd, Edwin E. (1964), Differentiable periodic maps, Berlin: Springer
  5. ^ Robinson, Alan (1983), "Derived tensor products in stable homotopy theory", Topology, 22 (1): 1–18, doi:10.1016/0040-9383(83)90042-3, MR 0682056
  6. ^ Elmendorf, Anthony D.; Kříž, Igor; Mandell, Michael A. & May, J. Peter (1997), Rings, modules and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, Providence, RI: American Mathematical Society, ISBN 0-8218-0638-6, MR 1417719

Read other articles:

Transmission electron micrograph of titanium dioxide nanoparticles from NIST Standard Reference Material 1898 Part of a series of articles onNanomaterials Carbon nanotubes Synthesis Chemistry Mechanical properties Optical properties Applications Timeline Fullerenes Buckminsterfullerene C70 fullerene Chemistry Health impact Carbon allotropes Other nanoparticles Carbon quantum dots Quantum dots Aluminium oxide Cellulose Ceramic Cobalt oxide Copper Gold Iron Iron oxide Iron–platinum Lipid Platinu…

إساياه أوسبورن معلومات شخصية الميلاد 15 نوفمبر 1987 (العمر 36 سنة)برمينغهام الطول 188 سنتيمتر  مركز اللعب وسط الجنسية المملكة المتحدة  معلومات النادي النادي الحالي نونيتون بورو  [لغات أخرى]‏ مسيرة الشباب سنوات فريق أستون فيلا المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2006

1908 French filmLa Civilisation à travers les âgesPromotional still of the film, showing the story of Cain and AbelDirected byGeorges MélièsWritten byGeorges MélièsProduced byGeorges MélièsProductioncompanyStar Film CompanyRelease date1908Running time320 meters[1]CountryFranceLanguageSilent Humanity Through the Ages (French: La Civilisation à travers les âges), released in the US initially as Humanity Through Ages,[1] is a 1908 historical drama film directed by Georges …

American baseball player (born 1994) Baseball player Duane Underwood Jr.Underwood with the Chicago Cubs in 2019Free agent PitcherBorn: (1994-07-20) July 20, 1994 (age 29)Raleigh, North Carolina, U.S.Bats: RightThrows: RightMLB debutJune 25, 2018, for the Chicago CubsMLB statistics (through 2023 season)Win–loss record5–10Earned run average4.63Strikeouts179 Teams Chicago Cubs (2018–2020) Pittsburgh Pirates (2021–2023) Duane Lee Underwood Jr. (born July 20, 1994) is an A…

Nai Khanom Tom Nai Khanom Tom foi um guerreiro do Reino de Aiutaia, capturado pelos birmaneses depois destes saquearem da cidade de Aiutaia em 1767. Em 1773, o rei birmanês Mangra, visitou Rangoon na celebração de Ket Tat Pagoda. Lutador de muay thai, uma arte marcial originária da Tailândia a qual era utilizada pelo exército siamês juntamente com técnicas do Krabi Krabong, Nai Khanom Tom foi admirado pelo então rei da Birmânia que exigiu um torneio por forma a que as suas habilidades …

Місто Оранджтаунангл. Orangetown Координати 41°03′31″ пн. ш. 73°57′42″ зх. д. / 41.05861111113877371° пн. ш. 73.961666666694782° зх. д. / 41.05861111113877371; -73.961666666694782Координати: 41°03′31″ пн. ш. 73°57′42″ зх. д. / 41.05861111113877371° пн. ш. 73.961666666694782° зх. д. / …

?Вівчарик угандійський Охоронний статус Найменший ризик (МСОП 3.1)[1] Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Птахи (Aves) Ряд: Горобцеподібні (Passeriformes) Родина: Вівчарикові (Phylloscopidae) Рід: Вівчарик (Phylloscopus) Вид: Вівчарик…

Wappen der Herzöge von Brieg Herzogliches Wappen Brieg und Liegnitz Das Herzogtum Brieg (tschechisch Břežské knížectví, polnisch Księstwo brzeskie) entstand im Jahre 1311 durch Ausgliederung aus dem Herzogtum Breslau und war ab 1329 ein Lehen der Krone Böhmen. Es wurde bis 1675 von den Schlesischen Piasten regiert und fiel dann durch Heimfall an den böhmischen Landesherrn. Nach dem Ersten Schlesischen Krieg 1742 fiel das Gebiet an Preußen. Residenzort war die gleichnamige Stadt Brieg.…

US Supreme Court justice from 1958 to 1981 Potter StewartOfficial portrait, 1976Associate Justice of the Supreme Court of the United StatesIn officeOctober 14, 1958 – July 3, 1981Nominated byDwight D. EisenhowerPreceded byHarold Hitz BurtonSucceeded bySandra Day O'ConnorJudge of the United States Court of Appeals for the Sixth CircuitIn officeApril 27, 1954 – October 13, 1958Nominated byDwight D. EisenhowerPreceded byXenophon HicksSucceeded byLester LeFevre Cecil Personal d…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Schwarz und weiß wie Tage und Nächte – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) 1978 filmSchwarz und weiß wie Tage und NächteDirected byWolfgang PetersenWritten by Karl Heinz Willschrei &…

Vooroorlogse foto van een start op het circuit van Saxtorp Poster voor de Grote Prijs van Zweden in 1930 Gedenksteen in Hedemora De Grand Prix van Zweden voor motorfietsen was een wegrace die van 1930 tot 1990 42 keer werd georganiseerd. Van het seizoen 1958 tot en met het seizoen 1990 maakte deze Grand Prix deel uit van het wereldkampioenschap wegrace. Geschiedenis De Grote Prijs van Zweden werd voor het eerst in 1930 in Saxtorp georganiseerd. In 1933 vormde ze de race voor het Europees kampioe…

موشيه آرنز (بالعبرية: משה ארנס)‏   آرنز خلال مؤتمر صحافي مُشترك مع وزير الدفاع الأمريكي في البنتاغون سنة 1999    مناصب عضو الكنيست[1]   عضو خلال الفترة21 يناير 1974  – 13 يونيو 1977  فترة برلمانية دورة الكنيست الثامنة  [لغات أخرى]‏  عضو الكنيست[1]  

Compact car and three-box sedan For the original Fiat Tipo sold from 1988 until 1995, see Fiat Tipo (Type 160). Motor vehicle Fiat Tipo2022 Fiat Tipo sedanOverviewManufacturerFCA ItalyAlso calledFiat Egea (Turkey)Dodge Neon (Mexico & Middle East)[1][2]Production2015–presentAssemblyTurkey: Bursa (Tofaş)DesignerRoberto Giolito at Centro Stile FiatBody and chassisClassCompact car (C)Body style4-door sedan5-door hatchback5-door cross hatchback5-door station wagon5-do…

NewmarketStasiun komuter PTVLokasiPin Oak Crescent, FlemingtonMelbourne, VictoriaAustraliaPemilikVicTrackPengelolaMetro TrainsJalur  Craigieburn Jumlah peron2 sisiJumlah jalur2KonstruksiJenis strukturTanahInformasi lainZona tarifMyki Zona 1Situs webPublic Transport VictoriaSejarahDibuka1 November 1860Ditutup1 Juli 1864Dibangun kembali9 Oktober 1871Operasi layanan Stasiun sebelumnya   Metro Trains   Stasiun berikutnya Kensingtonmenuju Flinders Street Jalur CraigieburnAscot Val…

Indian home shopping television channel This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2016) (Learn how and when to remove this template message) This arti…

Subfamily of bats Phyllostominae Tomes's sword-nosed bat (Lonchorhina aurita) Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Chiroptera Family: Phyllostomidae Subfamily: PhyllostominaeGray, 1825 Genera Chrotopterus Glyphonycteris Lampronycteris Lonchorhina Lophostoma Macrophyllum Macrotus Micronycteris Mimon Neonycteris Phylloderma Phyllostomus Tonatia Trachops Trinycteris Vampyrum Phyllostominae is a subfamily of bats that include big-eared…

Danish painter This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Christian David Gebauer – news · newspapers · books · scholar · JSTOR (October 2016) (Learn how and when to remove this template message) Christian David Gebauer; caricature by unknown artist (c. 1800) Winter Landscape near Brabrand Church (ca. 1831…

Douglas FrantzAssistant Secretary of State for Public AffairsIn officeSeptember 3, 2013 – October 1, 2015PresidentBarack ObamaDeputyValerie Fowler[1]Preceded byMichael HammerSucceeded byJohn Kirby Personal detailsBorn (1949-09-29) September 29, 1949 (age 74)North Manchester, Indiana, U.S.SpouseCatherine CollinsAlma materDePauw UniversityColumbia University Douglas Frantz (born September 29, 1949 in North Manchester, Indiana)[2] is an American Pulitzer Prize-winnin…

Location-based augmented reality mobile game 2013 video gameIngressDeveloper(s)NianticPublisher(s)NianticPlatform(s)Android, iOSRelease December 14, 2013 IngressAndroidDecember 14, 2013[1]iOSJuly 14, 2014[2]Ingress PrimeWW: November 5, 2018[3] Ingress (or Ingress Prime) is an augmented reality (AR) mobile game developed and published by Niantic for Android and iOS devices. The game first released on December 14, 2013, for Android devices and then for iOS devices on July 1…

ドロテア・シャルロッテ・フォン・ブランデンブルク=アンスバッハDorothea Charlotte von Brandenburg-Ansbach 出生 (1661-11-28) 1661年11月28日 神聖ローマ帝国 アンスバッハ辺境伯領、アンスバッハ死去 (1705-11-15) 1705年11月15日(43歳没) 神聖ローマ帝国ヘッセン=ダルムシュタット方伯領、ダルムシュタット埋葬 神聖ローマ帝国ヘッセン=ダルムシュタット方伯領、ダルムシュタット…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.15.21.73