This book is mainly centered around algebraic and combinatorial techniques for designing and using error-correcting linear block codes.[1][3][9] It differs from previous works in this area in its reduction of each result to its mathematical foundations, and its clear exposition of the results follow from these foundations.[4]
This book is written as a textbook for advanced undergraduates;[3] reviewer H. N. calls it "a leisurely introduction to the field which is at the same time mathematically rigorous".[8] It includes over 250 problems,[5] and can be read by mathematically-inclined students with only a background in linear algebra[1] (provided in an appendix)[6][8] and with no prior knowledge of coding theory.[2]
Reviewer Ian F. Blake complained that the first edition omitted some topics necessary for engineers, including algebraic decoding, Goppa codes, Reed–Solomon error correction, and performance analysis, making this more appropriate for mathematics courses, but he suggests that it could still be used as the basis of an engineering course by replacing the last two chapters with this material, and overall he calls the book "a delightful little monograph".[1] Reviewer John Baylis adds that "for clearly exhibiting coding theory as a showpiece of applied modern algebra I haven't seen any to beat this one".[6][9]
Related reading
Other books in this area include The Theory of Error-Correcting Codes (1977) by Jessie MacWilliams and Neil Sloane,[5] and A First Course in Coding Theory (1988) by Raymond Hill.[6]