Interesting number paradox

The interesting number paradox is a humorous paradox which arises from the attempt to classify every natural number as either "interesting" or "uninteresting". The paradox states that every natural number is interesting.[1] The "proof" is by contradiction: if there exists a non-empty set of uninteresting natural numbers, there would be a smallest uninteresting number – but the smallest uninteresting number is itself interesting because it is the smallest uninteresting number, thus producing a contradiction.

"Interestingness" concerning numbers is not a formal concept in normal terms, but an innate notion of "interestingness" seems to run among some number theorists. Famously, in a discussion between the mathematicians G. H. Hardy and Srinivasa Ramanujan about interesting and uninteresting numbers, Hardy remarked that the number 1729 of the taxicab he had ridden seemed "rather a dull one", and Ramanujan immediately answered that it is interesting, being the smallest number that is the sum of two cubes in two different ways.[2][3]

Paradoxical nature

Attempting to classify all numbers this way leads to a paradox or an antinomy[4] of definition. Any hypothetical partition of natural numbers into interesting and uninteresting sets seems to fail. Since the definition of interesting is usually a subjective, intuitive notion, it should be understood as a semi-humorous application of self-reference in order to obtain a paradox.

The paradox is alleviated if "interesting" is instead defined objectively: for example, the smallest natural number that does not appear in an entry of the On-Line Encyclopedia of Integer Sequences (OEIS) was originally found to be 11630 on 12 June 2009.[5] The number fitting this definition later became 12407 from November 2009 until at least November 2011, then 13794 as of April 2012, until it appeared in sequence OEISA218631 as of 3 November 2012. Since November 2013, that number was 14228, at least until 14 April 2014.[5] In May 2021, the number was 20067. (This definition of uninteresting is possible only because the OEIS lists only a finite number of terms for each entry.[6] For instance, OEISA000027 is the sequence of all natural numbers, and if continued indefinitely would contain all positive integers. As it is, the sequence is recorded in its entry only as far as 77.) Depending on the sources used for the list of interesting numbers, a variety of other numbers can be characterized as uninteresting in the same way.[7] For instance, the mathematician and philosopher Alex Bellos suggested in 2014 that a candidate for the lowest uninteresting number would be 224 because it was, at the time, "the lowest number not to have its own page on [the English-language version of] Wikipedia".[8] As of August 2024, this number is 315.

However, as there are many significant results in mathematics that make use of self-reference (such as Gödel's incompleteness theorems), the paradox illustrates some of the power of self-reference,[nb 1] and thus touches on serious issues in many fields of study. The paradox can be related directly to Gödel's incompleteness theorems if one defines an "interesting" number as one that can be computed by a program that contains fewer bits than the number itself.[9] Similarly, instead of trying to quantify the subjective feeling of interestingness, one can consider the length of a phrase needed to specify a number. For example, the phrase "the least number not expressible in fewer than eleven words" sounds like it should identify a unique number, but the phrase itself contains only ten words, and so the number identified by the phrase would have an expression in fewer than eleven words after all. This is known as the Berry paradox.[10]

History

In 1945, Edwin F. Beckenbach published a short letter in The American Mathematical Monthly suggesting that

One might conjecture that there is an interesting fact concerning each of the positive integers. Here is a "proof by induction" that such is the case. Certainly, 1, which is a factor of each positive integer, qualifies, as do 2, the smallest prime; 3, the smallest odd prime; 4, Bieberbach's number; etc. Suppose the set S of positive integers concerning each of which there is no interesting fact is not vacuous, and let k be the smallest member of S. But this is a most interesting fact concerning k! Hence S has no smallest member and therefore is vacuous. Is the proof valid?[11]

Constance Reid included the paradox in the 1955 first edition of her popular mathematics book From Zero to Infinity, but removed it from later editions.[12] Martin Gardner presented the paradox as a "fallacy" in his Scientific American column in 1958, including it with six other "astonishing assertions" whose purported proofs were also subtly erroneous.[1] A 1980 letter to The Mathematics Teacher mentions a jocular proof that "all natural numbers are interesting" having been discussed three decades earlier.[13] In 1977, Greg Chaitin referred to Gardner's statement of the paradox and pointed out its relation to an earlier paradox of Bertrand Russell on the existence of a smallest undefinable ordinal (despite the fact that all sets of ordinals have a smallest element and that "the smallest undefinable ordinal" would appear to be a definition).[4][14]

In The Penguin Dictionary of Curious and Interesting Numbers (1987), David Wells commented that 39 "appears to be the first uninteresting number", a fact that made it "especially interesting", and thus 39 must be simultaneously interesting and dull.[15]

See also

Notes

  1. ^ See, for example, Gödel, Escher, Bach#Themes, which itself—like this section of this article—also mentions and contains a wikilink to self-reference.

References

  1. ^ a b Gardner, Martin (January 1958). "A collection of tantalizing fallacies of mathematics". Mathematical games. Scientific American. 198 (1): 92–97. doi:10.1038/scientificamerican0158-92. JSTOR 24942039.
  2. ^ Singh, Simon (15 October 2013). "Why is the number 1,729 hidden in Futurama episodes?". BBC News Online. Retrieved 15 October 2013.
  3. ^ Baez, John C. (2022-02-28). "Hardy, Ramanujan and Taxi No. 1729". The n-Category Café. Retrieved 2022-10-14.
  4. ^ a b Chaitin, G. J. (July 1977). "Algorithmic information theory". IBM Journal of Research and Development. 21 (4): 350–359. doi:10.1147/rd.214.0350.
  5. ^ a b Johnston, N. (June 12, 2009). "11630 is the First Uninteresting Number". Retrieved November 12, 2011.
  6. ^ Bischoff, Manon. "The Most Boring Number in the World Is ..." Scientific American. Retrieved 2023-03-16.
  7. ^ Greathouse IV, Charles R. "Uninteresting Numbers". Archived from the original on 2018-06-12. Retrieved 2011-08-28.
  8. ^ Bellos, Alex (June 2014). The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life. illus. The Surreal McCoy (1st Simon & Schuster hardcover ed.). N.Y.: Simon & Schuster. pp. 238 & 319 (quoting p. 319). ISBN 978-1-4516-4009-0.
  9. ^ Bennett, Charles H. (2007). "On Random and Hard-to-Describe Numbers". In Calude, Cristian S. (ed.). Randomness and Complexity, from Leibniz to Chaitin. World Scientific. pp. 3–12. doi:10.1142/9789812770837_0001. ISBN 978-9-812-77082-0. OCLC 173808093. Originally circulated as a preprint in 1979.
  10. ^ Yanofsky, Noson S. (2013). The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us. Cambridge, Massachusetts: MIT Press. pp. 26–28. ISBN 978-1-4619-3955-9. OCLC 857467673.
  11. ^ Beckenbach, Edwin F. (April 1945). "Interesting integers". The American Mathematical Monthly. 52 (4): 211. JSTOR 2305682.
  12. ^ Hamilton, J. M. C. (1960). "Review of From Zero to Infinity, 2nd ed". Mathematics Magazine. 34 (1): 43–44. doi:10.2307/2687853. JSTOR 2687853?. MR 1571022.
  13. ^ Gould, Henry W. (September 1980). "Which numbers are interesting?". The Mathematics Teacher. 73 (6): 408. JSTOR 27962064.
  14. ^ Russell, Bertrand (July 1908). "Mathematical logic as based on the theory of types". American Journal of Mathematics. 30 (3): 222–262. doi:10.2307/2369948. JSTOR 2369948.
  15. ^ Wells, David (1987). The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books. p. 120. OCLC 17634415.

Further reading

Read other articles:

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cette section ou cet article est une traduction incomplète (mars 2015). Vous pouvez modifier la page pour effectuer la traduction. Guy Sebastian Guy SebastianInformations générales Naissance 26 octobre 1981 (42 ans)Kelang, Malaisie Activité principale Chanteur, auteur-compositeur Genre musical Soul, R&B, Pop Années actives Depuis 2003 modifier Guy Sebastian, né le 26 octobre 1981 à Kelang en Malai...

 

جزء من سلسلة مقالات حولالاختراق والقرصنة أمن الحاسوب أمن الحاسوب أمن الشبكة التاريخ فريكنج علم الفيروسات الرقمية المعماة [الإنجليزية] أخلاقيات قراصنة الحاسوب مخترق أمني أبيض القبعة رمادي القبعة أسود القبعة بيان الهاكر مؤتمر القبعات السوداء ديف كون جريمة إلكترونية جريمة...

 

موسيقى كلاسيكية في القرن العشرينمعلومات عامةالنشأة والظهور 1900 أصول الأسلوب موسيقى كلاسيكية تعديل - تعديل مصدري - تعديل ويكي بيانات يصف مصطلح الموسيقا الكلاسيكية في القرن العشرين (بالإنجليزية: 20th century classical music)‏ كل الموسيقا الفنية التي أُلفت شكليًا بين العامين 1901 و 2000.[1 ...

Pemandangan kota Changwon Changwon adalah sebuah kota di Korea Selatan yang merupakan ibu kota dari provinsi Gyeongsang Selatan. Pada tahun 2005, kota ini memiliki jumlah penduduk sebanyak 549.507 jiwa dengan memiliki luas wilayah 292,80 km². Kota ini memiliki angka kepadatan penduduk sebesar 1.803,8 jiwa/km². Kota ini terletak 40 km dari barat Busan. Lihat pula Daftar kota di Korea Selatan Pranala luar Situs resmi 35°16′15″N 128°39′47″E / 35.27083°N 128...

 

GaugeGauge in 2013Lahir24 Juli 1980 (umur 43)Hot Springs, Arkansas, Amerika Serikat Gauge (lahir 24 Juli 1980) adalah seorang pemeran pornografi, dan penari berkebangsaan Amerika Serikat.[1][2] Karier Setelah muncul di sekitar 140 film, Gauge meninggalkan industri film porno pada tahun 2005[3] karena perselisihan kontrak dengan perusahaan manajemennya. Dia disertifikasi sebagai teknolog bedah, tetapi dia melaporkan bahwa dia sering ditolak pekerjaan karena karir ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rajavin Parvaiyile – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this template message) 1995 Indian filmRajavin ParvaiyilePosterDirected byJanaki SoundarWritten byJanaki SoundarProduced byS. Soundara PandianStarring...

WWE pay-per-view and livestreaming event series Professional wrestling pay-per-view event series NXT WarGamesNXT WarGames 2021 logoPromotionWWEBrandNXTOther nameNXT TakeOver: WarGames (2017–2020)First event2017Last event2021Signature matchWarGames match NXT WarGames (originally known as NXT TakeOver: WarGames) was a professional wrestling event produced annually by WWE, a Connecticut-based professional wrestling promotion. Held exclusively for wrestlers from the promotion's developmental te...

 

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

 

French dance and music This article is about the dance and its music. For the commune in Ardèche, France, see Borée. For the card game, see Bourré. For the Bach piece, see Bourrée in E minor. Borrèia in Auvergne, early 20th century Lute Suite No. 1 – BWV 996, E Minor – V Bourrée Performed on a lautenwerck by Martha Goldstein Problems playing this file? See media help. People dancing bourrée in a folk ball The bourrée (Occitan: borrèia;[1] also in England, borry or bore) i...

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...

 

† Египтопитек Реконструкция внешнего вида египтопитека Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:Четвероно...

 

2013 video gameMarvel HeroesThe key art for Marvel Heroes.Developer(s) Gazillion Entertainment Secret Identity Studios Publisher(s)Gazillion EntertainmentEngineUnreal Engine 3[1]Platform(s)All versionsMicrosoft Windows, OS XOmega onlyPlayStation 4, Xbox OneReleaseJune 4, 2013Genre(s)Massively multiplayer online role-playing, action role-playingMode(s)Multiplayer Marvel Heroes,[2][3] also known as Marvel Heroes 2015, Marvel Heroes 2016 and Marvel Heroes Omega, was a fre...

Union of North African Football Federationsاتـحـاد شـمـال إفـريـقـيـا لـكـرة الـقـدمUnion Nord-Africaine de FootballDisciplina Calcio Fondazione2005 GiurisdizioneNordafrica Federazioni affiliate5 ConfederazioneConfédération Africaine de Football Sede Tunisi Presidente Abdelhakim Al-Shalmani Sito ufficialewww.unafonline.org/ar/ Modifica dati su Wikidata · Manuale I paesi membri dell'Union of North African Football Federations La Union of North Afric...

 

1934 novel by Pearl S. Buck This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: The Mother Buck novel – news · newspapers · books · scholar · JSTOR (January 2024) The Mother is a novel by Pearl S. Buck, first published in New York by the John Day Company in 1934. It follows the life of peasant wom...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

Overview of the geography of South Dakota Terrain and primary geographic features of South Dakota South Dakota is a state located in the north-central United States. It is usually considered to be in the Midwestern region of the country. The state can generally be divided into three geographic regions: eastern South Dakota, western South Dakota, and the Black Hills. Eastern South Dakota is lower in elevation and higher in precipitation than the western part of the state, and the Black Hills a...

 

Christian holiday Twelfth NightMervyn Clitheroe's Twelfth Night party, by PhizAlso calledEpiphany EveObserved byChristiansTypeChristianSignificanceevening prior to EpiphanyObservancesSinging Christmas carolschalking the doormerrymakinghaving one's house blessedattending church servicesDate5 or 6 JanuaryFrequencyannualRelated toTwelve Days of ChristmasChristmastideEpiphanyEpiphanytide Twelfth Night (also known as Epiphany Eve depending upon the tradition) is a Christian festival on t...

 

Aéroport international de San DiegoSan Diego International Airport Vue du terminal 2 de l'aéroport international de San Diego. Localisation Pays États-Unis Ville San Diego (Californie) Coordonnées 32° 44′ 02″ nord, 117° 11′ 23″ ouest Altitude 5 m (17 ft) Informations aéronautiques Code IATA SAN Code OACI KSAN Code FAA SAN Type d'aéroport public Gestionnaire Autorité aéroportuaire de San Diego Pistes Direction Longueur Surface 09/27 2 865 m...

Westland Wallace Role Two-seat general-purpose biplaneType of aircraft Manufacturer Westland First flight 31 October 1931 Introduction 1933 Retired 1943 Primary user Royal Air Force Produced 1933-1936 Number built 104 + 68 conversions from Wapitis The Westland Wallace was a British two-seat, general-purpose biplane of the Royal Air Force, developed by Westland as a follow-on to their successful Wapiti.[1] As the last of the interwar general purpose biplanes, it was used by a num...

 

Pour les articles homonymes, voir Lindley. Edward Frederick Lindley Wood Lord Halifax en 1947. Fonctions Vice-roi et gouverneur général des Indes 3 avril 1926 – 18 avril 1931(5 ans et 15 jours) Monarque George V Premier ministre Stanley BaldwinRamsay MacDonald Prédécesseur Rufus Isaacs Successeur Freeman Freeman-Thomas Secrétaire d'État à la Guerre 7 juin 1935 – 22 novembre 1935(5 mois et 15 jours) Monarque George V Premier ministre Stanley Baldwin Prédécesse...