This article is about the injective hull of a module in algebra. For injective hulls of metric spaces, also called tight spans, injective envelopes, or hyperconvex hulls, see tight span.
A moduleE is called the injective hull of a module M, if E is an essential extension of M, and E is injective. Here, the base ring is a ring with unity, though possibly non-commutative.
In particular, the injective hull of in is the module .
Properties
The injective hull of M is unique up to isomorphisms which are the identity on M, however the isomorphism is not necessarily unique. This is because the injective hull's map extension property is not a full-fledged universal property. Because of this uniqueness, the hull can be denoted as E(M).
The injective hull E(M) is a maximal essential extension of M in the sense that if M⊆E(M) ⊊B for a module B, then M is not an essential submodule of B.
The injective hull E(M) is a minimal injective module containing M in the sense that if M⊆B for an injective module B, then E(M) is (isomorphic to) a submodule of B.
If N is an essential submodule of M, then E(N)=E(M).
Every module M has an injective hull. A construction of the injective hull in terms of homomorphisms Hom(I, M), where I runs through the ideals of R, is given by Fleischer (1968).
The dual notion of a projective cover does not always exist for a module, however a flat cover exists for every module.
Ring structure
In some cases, for R a subring of a self-injective ring S, the injective hull of R will also have a ring structure.[2] For instance, taking S to be a full matrix ring over a field, and taking R to be any ring containing every matrix which is zero in all but the last column, the injective hull of the right R-module R is S. For instance, one can take R to be the ring of all upper triangular matrices. However, it is not always the case that the injective hull of a ring has a ring structure, as an example in (Osofsky 1964) shows.
A large class of rings which do have ring structures on their injective hulls are the nonsingular rings.[3] In particular, for an integral domain, the injective hull of the ring (considered as a module over itself) is the field of fractions. The injective hulls of nonsingular rings provide an analogue of the ring of quotients for non-commutative rings, where the absence of the Ore condition may impede the formation of the classical ring of quotients. This type of "ring of quotients" (as these more general "fields of fractions" are called) was pioneered in (Utumi 1956), and the connection to injective hulls was recognized in (Lambek 1963).
More generally, let C be an abelian category. An objectE is an injective hull of an object M if M → E is an essential extension and E is an injective object.