HyperSizer developed from the NASA Langley Research Center (LaRC) ST-SIZE research code. ST-SIZE was originally developed because NASA identified a need for accurate methods of formulating panel stiffness and thermal expansion coefficients, leading to the development of ST-SIZE from 1988 to 1995. Another need was the reduction of mass on high-speed aircraft and weight reduction for optimization. ST-SIZE was developed by a team of engineers working on the National Aerospace Plane X-30.[2] Two major versions of ST-SIZE were created. The original version included formulations for stiffness terms and thermal expansion coefficients based on approximations often taken in traditional design methods. In 1990, a version of ST-SIZE was formed for structural design and weight prediction. A new method for formulation of stiffened panel properties was developed starting in 1991. A method for including composite lamina and laminate data in the formulation of stiffened panel structural properties was first developed. Thermal coefficients were created to handle both in-plane and through-the-thickness temperature gradients for membrane, bending, and membrane-bending coupling. A method was then developed to enter these thermal expansion and bending coefficients into the MSC Software version of Nastran for finite element analysis (FEA) using a model with a single plane of finite elements.[3][4] Other solvers are supported such as I-DEAS.
In May 1996, Collier Research Corporation was formed in Hampton, Virginia from the original ST-SIZE design team, which included Craig S. Collier. Collier Research obtained an exclusive, all-fields-of-use license, and became the first company to license NASA software for commercial use.[1] They combined the NASA LaRC ST-SIZE copyright research code with other company proprietary software; the combined software became HyperSizer.[5]
Uses
Commercial customers use HyperSizer software to design and analyze composite material and metallic structures. For example, the wind turbine design industry uses the program to design 100-meter long blades that are light and manufacturable.[6][7][8]
Earlier codes were originally intended for weight prediction but evolved into ones that were able to assess structural integrity and find optimum sizes and materials. HyperSizer Version 6.1, released in May 2011, contains an integrated suite of failure analysis predictions verified by test data. New capabilities optimize manufacturing.[11] Capabilities have been added to include: macromechanics, micromechanics, failure mode and effects analysis, panel concepts, composite optimization, and integration with Abaqus FEA software.[12]
There are two available versions of HyperSizer, Pro and Express. Both HyperSizer Pro and Express can equally analyze and design laminates and sandwich panels, and update the FEM, and report margins. HyperSizer Express (released 2016) delivers key capabilities of HyperSizer Pro in a user-friendly packaged aimed at the composite engineer. While HyperSizer Pro specializes in aerospace and space launch, applications for Express include automotive, sporting goods, medical, industrial, and marine.[13]
Details
HyperSizer is written in Fortran and Visual Basic and contains over 400,000 lines of code. The software is compatible with MicrosoftWindows 7, Windows 8, and Windows 10.
Version 6.1 (released in May 2011) integrated with FEA solvers in an iterative loop conducting trade studies and examining potential design candidates. HyperSizer ensures structural integrity through failure analyses. It increases manufacturability by minimizing ply drops, identifying laminate transition add/drop boundaries, and defining ply shapes.[14][15]
HyperSizer competes in the analysis and sizing software market with Firehole Composites, ESI, and ESAComp among others.
HyperSizer Pro was rated first in the "tools of the month" by Desktop Engineering magazine in July 2011.[16] HyperSizer Express was named "Editor's Pick" by Desktop Engineering in March 2016.[17]