Hume's principle

Hume's principle or HP says that the number of Fs is equal to the number of Gs if and only if there is a one-to-one correspondence (a bijection) between the Fs and the Gs. HP can be stated formally in systems of second-order logic. Hume's principle is named for the Scottish philosopher David Hume and was coined by George Boolos.

HP plays a central role in Gottlob Frege's philosophy of mathematics. Frege shows that HP and suitable definitions of arithmetical notions entail all axioms of what we now call second-order arithmetic. This result is known as Frege's theorem, which is the foundation for a philosophy of mathematics known as neo-logicism.

Origins

Hume's principle appears in Frege's Foundations of Arithmetic (§63),[1] which quotes from Part III of Book I of David Hume's A Treatise of Human Nature (1740). Hume there sets out seven fundamental relations between ideas. Concerning one of these, proportion in quantity or number, Hume argues that our reasoning about proportion in quantity, as represented by geometry, can never achieve "perfect precision and exactness", since its principles are derived from sense-appearance. He contrasts this with reasoning about number or arithmetic, in which such a precision can be attained:

Algebra and arithmetic [are] the only sciences in which we can carry on a chain of reasoning to any degree of intricacy, and yet preserve a perfect exactness and certainty. We are possessed of a precise standard, by which we can judge of the equality and proportion of numbers; and according as they correspond or not to that standard, we determine their relations, without any possibility of error. When two numbers are so combined, as that the one has always a unit answering to every unit of the other, we pronounce them equal; and it is for want of such a standard of equality in [spatial] extension, that geometry can scarce be esteemed a perfect and infallible science. (I. III. I.)[2]

Note Hume's use of the word number in the ancient sense, to mean a set or collection of things rather than the common modern notion of "positive integer". The ancient Greek notion of number (arithmos) is of a finite plurality composed of units. See Aristotle, Metaphysics, 1020a14 and Euclid, Elements, Book VII, Definition 1 and 2. The contrast between the old and modern conception of number is discussed in detail in Mayberry (2000).

Influence on set theory

The principle that cardinal number was to be characterized in terms of one-to-one correspondence had previously been used by Georg Cantor, whose writings Frege knew. The suggestion has therefore been made that Hume's principle ought better be called "Cantor's Principle" or "The Hume-Cantor Principle". But Frege criticized Cantor on the ground that Cantor defines cardinal numbers in terms of ordinal numbers, whereas Frege wanted to give a characterization of cardinals that was independent of the ordinals. Cantor's point of view, however, is the one embedded in contemporary theories of transfinite numbers, as developed in axiomatic set theory.

References

  • Anderson, D.; Zalta, E. (2004). "Frege, Boolos, and Logical Objects" (PDF). Journal of Philosophical Logic. 33: 1–26. doi:10.1023/B:LOGI.0000019236.64896.fd. S2CID 6620015.
  • Boolos, George (1990). "The Standard of Equality of Numbers". In Boolos, G. (ed.). Meaning and Method: Essays in Honour of Hilary Putnam. Cambridge University Press. pp. 261–277. ISBN 978-0-521-36083-8.
  • Boolos, George (1998). "§II. "Frege Studies". Logic, Logic, and Logic. Harvard University Press. pp. 133–342. ISBN 978-0-674-53767-5.
  • Burgess, John (2018) [2005]. Fixing Frege. Princeton University Press. ISBN 978-0-691-18706-8.
  • Frege, Gottlob (1884). Die Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung [The Foundations of Arithmetic]. Breslau: Wilhelm Koebner.
  • Hume, David (1739–1740). A Treatise of Human Nature.
  • Mayberry, John P. (2000). The Foundations of Mathematics in the Theory of Sets. Encyclopedia of Mathematics and its Applications. Vol. 83. Cambridge University Press. ISBN 978-0-521-77034-7.

Citations

  1. ^ "IV. Der Begriff der Anzahl § 63. Die Möglichkeit der eindeutigen Zuordnung als solches. Logisches Bedenken, dass die Gleichheit für diesen Fall besonders erklärt wird". Frege 1884 – via Project Gutenberg. §63. Ein solches Mittel nennt schon Hume: »Wenn zwei Zahlen so combinirt werden, dass die eine immer eine Einheit hat, die jeder Einheit der andern entspricht, so geben wir sie als gleich an.«
  2. ^ "Part III. Of Knowledge and Probability: Sect. I. Of Knowledge". Hume 1739–1740 – via Project Gutenberg.

Read other articles:

This article is about needle-like growths in animals. For backbone, see Vertebral column. For other uses, see Spine (disambiguation). In a zoological context, spines are hard, needle-like anatomical structures found in both vertebrate and invertebrate species. The spines of most spiny mammals are modified hairs, with a spongy center covered in a thick, hard layer of keratin and a sharp, sometimes barbed tip. Occurrence Mammals The defensive spines on a porcupine Spines in mammals include the ...

 

The number of riders per nation participated in the 2014 Tour de France:   20+   10–19   2–9   1 The 2014 Tour de France was the 101st edition of the race, one of cycling's Grand Tours. The 3,358.1-kilometre (2,086.6 mi) race included 21 stages, starting in Leeds, United Kingdom, on 5 July and finishing on the Champs-Élysées in Paris on 27 July.[1] The race was contested by 22 teams.[2] All of the eighteen UCI ProTeams were a...

 

Basilika Perawan Montserrat, Hormigueros Ini adalah daftar basilika di Puerto Riko. Katolik Daftar basilika Gereja Katolik di Puerto Riko[1]: Basilika Perawan Montserrat, Hormigueros Basilika Katedral Metropolitan Santo Yohanes Pembaptis Puerto Riko Lihat juga Gereja Katolik Roma Gereja Katolik di Puerto Riko Daftar katedral di Puerto Riko Daftar basilika Referensi ^ Basilika di seluruh dunia lbsDaftar basilika di Amerika UtaraNegaraberdaulat Amerika Serikat Antigua dan Barbuda Bahama...

ClickFilm poster for ClickSutradaraFrank CoraciProduserJack GiarraputoSteve KorenMark O'KeefeAdam SandlerDitulis olehMark O'KeefeSteve KorenPemeranAdam SandlerKate BeckinsaleChristopher WalkenHenry WinklerJulie KavnerDavid HasselhoffPenata musikRupert Gregson-WilliamsSinematograferDean SemlerPenyuntingJeff GoursonDistributorColumbia PicturesRevolution StudiosTanggal rilis 22 Juni 2006 23 Juni 2006 29 September 2006 Durasi107 menitBahasa(Inggris)Anggaran$70,000,000Pendapatankotor$237,681...

 

The Victor Khanye Local Municipality is a Local Municipality in Mpumalanga in South Africa. The council consists of seventeen members elected by mixed-member proportional representation. Nine councillors are elected by first-past-the-post voting in nine wards, while the remaining eight are chosen from party lists so that the total number of party representatives is proportional to the number of votes received. In the election of 1 November 2021 the African National Congress (ANC) won a majori...

 

Hana (Hana yori mo Naho - 花よりもなほ)SutradaraHirokazu Kore-edaProduserNozomu EnokiShiho SatoHijiri TaguchiDitulis olehHirokazu Kore-edaPemeranJunichi OkadaRie MiyazawaSinematograferYutaka YamasakiPenyuntingHirokazu Kore-edaDistributorShochiku (Jepang)Funimation (AS)Tanggal rilis3 Juni 2006Durasi127 menitNegaraJepangBahasaJepang Hana - the Tale of a Reluctant Samurai, dikenal di Jepang sebagai Hana yori mo Naho (花よりもなほcode: ja is deprecated ), adalah jidaigeki Jepang tahun...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Alfredo AndersonInformasi pribadiTanggal lahir 31 Oktober 1978 (umur 45)Tempat lahir PanamaPosisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)2001 Omiya Ardija * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Alfredo An...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Gymnasieskolan är en svensk sekundärutbildning. Sekundärutbildning i Bagdad, Irak. Sekundärutbildning (secondary school) är den utbildningsnivå i ungdomsskolan som följer på primärutbildningen. Antal skolår och elevernas ålder varierar mellan olika länder, men vanligtvis är sekundärskolan inriktad på tonåringar, och motsvaras av den svenska grundskolans högstadium och gymnasieskolan, eller USA:s high school. I International Standard Classification of Education utgörs den av ...

 

Pemandangan Sandy Bay di pesisir Mediterania timur Gibraltar, menampilkan lembah penampung air lama dan menghadap utara ke Costa del Sol, Spanyol. Sandy Bay adalah sebuah teluk di pesisir Mediterania timur Gibraltar, di sisi seberang The Rock dari kota utamanya. Teluk ini terletak di sebelah selatan Catalan Bay dan dapat diakses melalui Sir Herbert Miles Road. Daerah resapan Tepat di atas Sandy Bay dan jalan Sir Herbert Miles terdapat daerah resapan air besar yang tidak lagi dipakai. Lembah t...

 

Pour le sujet général sur la gouvernance britannique, voir Politique au Royaume-Uni. Ne pas confondre avec le terme général de Gouvernement de Sa Majesté au sein des nations du Commonwealth. Pour les articles homonymes, voir HMG. Gouvernementde Sa MajestéHis Majesty's Government Situation Création 1707 Siège Whitehall, Londres Royaume-Uni Organisation Effectifs 560 000 fonctionnaires Premier ministre Rishi Sunak Site web www.gov.uk modifier  Le Gouvernement du Royaume-Uni (en an...

Norwegian footballer (born 1988) Vegard Forren Forren in 2018 with MoldePersonal informationFull name Vegard Valgermo Forren[1]Date of birth (1988-02-16) 16 February 1988 (age 36)Place of birth Kyrksæterøra, NorwayHeight 1.86 m (6 ft 1 in)Position(s) Centre-backTeam informationCurrent team KÍ KlaksvíkNumber 4Youth career KIL/HemneSenior career*Years Team Apps (Gls)2007–2013 Molde 146 (5)2013 Southampton 0 (0)2013–2017 Molde 92 (5)2017 Brighton & Hove Al...

 

British dark rock band This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Antimatter band – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this message) AntimatterMick Moss, Zürich, Switzerland, October 2015Background informationAlso known asAngelica (1998)OriginLive...

 

Spanish footballer (born 1985) Rufino Rufino training with KitcheePersonal informationFull name Rufino Segovia del BurgoDate of birth (1985-03-01) 1 March 1985 (age 39)Place of birth Madrid, SpainHeight 1.76 m (5 ft 9+1⁄2 in)Position(s) ForwardYouth career Rayo VallecanoSenior career*Years Team Apps (Gls)2004–2005 Rayo Vallecano B ? (17)2005 Rayo Vallecano 5 (1)2005–2007 Atlético Madrid B 66 (7)2006–2007 Atlético Madrid 2 (0)2007–2008 Valladolid B 35 (11)20...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Tour de Drenthe féminin 2011 GénéralitésCourse5e Tour de Drenthe fémininCompétitionCoupe du monde féminine de cyclisme sur route 2011 CDMDate16 avril 2011Distance132,8 kmPays Pays-BasLieu de départHoogeveenLieu d'arrivéeHoogeveenÉquipes26Partantes156Arrivantes123Vitesse moyenne39,202 km/hRésultatsVainqueur Marianne Vos (Nederland Bloeit)Deuxième Kirsten Wild (AA Drink-Leontien.nl)Troisième Giorgia Bronzini (Colavita Forno d'Asolo) ◀20102012▶Documentation La 5e ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Quadruple reed – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Bassoon double reeds: note the elliptical (oval) opening (bottom left) Shehnai Cambodian sralai instruments. At left the srali thom (thom me...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Batalla de San Julián Guerra CristeraParte de Guerra Cristera Plaza de San JuliánFecha 15 de marzo de 1927Lugar San Julián (Jalisco), MéxicoCoordenadas 21°01′00″N 102°10′00″O / 21.016666666667, -102.16666666667Resultado Victoria táctica cristeraConsecuencias Asesinato de San Julio Álvarez Mendoza El Gobierno Federal reconoce como amenaza a la rebelión CristeraBeligerantes Ejército Cristero Ejército mexicano Comandantes Miguel Hernández José Reyes Vega Vict...