Network coding has been shown to optimally use bandwidth in a network, maximizing information flow but the scheme is very inherently vulnerable to pollution attacks by malicious nodes in the network. A node injecting garbage can quickly affect many receivers. The pollution of network packets spreads quickly since the output of (even an) honest node is corrupted if at least one of the incoming packets is corrupted.
An attacker can easily corrupt a packet even if it is encrypted by either forging the signature or by producing a collision under the hash function. This will give an attacker access to the packets and the ability to corrupt them. Denis Charles, Kamal Jain and Kristin Lauter designed a new homomorphic encryption signature scheme for use with network coding to prevent pollution attacks.[1]
The homomorphic property of the signatures allows nodes to sign any linear combination of the incoming packets without contacting the signing authority. In this scheme it is computationally infeasible for a node to sign a linear combination of the packets without disclosing what linear combination was used in the generation of the packet. Furthermore, we can prove that the signature scheme is secure under well known cryptographic assumptions of the hardness of the discrete logarithm problem and the computational Elliptic curve Diffie–Hellman.
Network coding
Let be a directed graph where is a set, whose elements are called vertices or nodes, and is a set of ordered pairs of vertices, called arcs, directed edges, or arrows. A source wants to transmit a file to a set of the vertices. One chooses a vector space(say of dimension ), where is a prime, and views the data to be transmitted as a bunch of vectors . The source then creates the augmented vectors by setting where is the -th coordinate of the vector . There are zeros before the first '1' appears in . One can assume without loss of generality that the vectors are linearly independent. We denote the linear subspace (of ) spanned by these vectors by . Each outgoing edge computes a linear combination, , of the vectors entering the vertex where the edge originates, that is to say
where . We consider the source as having input edges carrying the vectors . By induction, one has that the vector on any edge is a linear combination and is a vector in . The k-dimensional vector is simply the first k coordinates of the vector . We call the matrix whose rows are the vectors , where are the incoming edges for a vertex , the global encoding matrix for and denote it as . In practice the encoding vectors are chosen at random so the matrix is invertible with high probability. Thus, any receiver, on receiving can find by solving
where the are the vectors formed by removing the first coordinates of the vector .
Decoding at the receiver
Each receiver, , gets vectors which are random linear combinations of the ’s.
In fact, if
then
Thus we can invert the linear transformation to find the ’s with high probability.
History
Krohn, Freedman and Mazieres proposed a theory[2] in 2004 that if we have a hash function
such that:
Then server can securely distribute to each receiver, and to check if
we can check whether
The problem with this method is that the server needs to transfer secure information to each of the receivers. The hash functions needs to be transmitted to all the nodes in the network through a separate secure channel. is expensive to compute and secure transmission of is not economical either.
Advantages of homomorphic signatures
Establishes authentication in addition to detecting pollution.
No need for distributing secure hash digests.
Smaller bit lengths in general will suffice. Signatures of length 180 bits have as much security as 1024 bit RSA signatures.
Public information does not change for subsequent file transmission.
Signature scheme
The homomorphic property of the signatures allows nodes to sign any linear combination of the incoming packets without contacting the signing authority.
Let be a prime and a prime power. Let be a vector space of dimension and be an elliptic curve such that .
Define as follows:
.
The function is an arbitrary homomorphism from to .
The server chooses secretly in and publishes a point of p-torsion such that and also publishes for .
The signature of the vector is
Note: This signature is homomorphic since the computation of h is a homomorphism.
Signature verification
Given and its signature , verify that
The verification crucially uses the bilinearity of the Weil-pairing.
System setup
The server computes for each . Transmits .
At each edge while computing
also compute
on the elliptic curve .
The signature is a point on the elliptic curve with coordinates in . Thus the size of the signature is bits (which is some constant times bits, depending on the relative size of and ), and this is the transmission overhead. The computation of the signature at each vertex requires bit operations, where is the in-degree of the vertex . The verification of a signature requires bit operations.
Proof of security
Attacker can produce a collision under the hash function.
If given points in find
and
such that and
Proposition: There is a polynomial time reduction from discrete log on the cyclic group of order on elliptic curves to Hash-Collision.
If , then we get . Thus .
We claim that and . Suppose that , then we would have , but is a point of order (a prime) thus . In other words in . This contradicts the assumption that and are distinct pairs in . Thus we have that , where the inverse is taken as modulo .
If we have r > 2 then we can do one of two things. Either we can take and as before and set for > 2 (in this case the proof reduces to the case when ), or we can take and where are chosen at random from . We get one equation in one unknown (the discrete log of ). It is quite possible that the equation we get does not involve the unknown. However, this happens with very small probability as we argue next. Suppose the algorithm for Hash-Collision gave us that
Then as long as , we can solve for the discrete log of Q. But the ’s are unknown to the oracle for Hash-Collision and so we can interchange the order in which this process occurs. In other words, given , for , not all zero, what is the probability that the ’s we chose satisfies ? It is clear that the latter probability is . Thus with high probability we can solve for the discrete log of .
We have shown that producing hash collisions in this scheme is difficult. The other method by which an adversary can foil our system is by forging a signature. This scheme for the signature is essentially the Aggregate Signature version of the Boneh-Lynn-Shacham signature scheme.[4] Here it is shown that forging a signature is at least as hard as solving the elliptic curve Diffie–Hellman problem. The only known way to solve this problem on elliptic curves is via computing discrete-logs. Thus forging a signature is at least as hard as solving the computational co-Diffie–Hellman on elliptic curves and probably as hard as computing discrete-logs.
16 MB SD Card 512 MB SD Card 1 GB SD Card Secure Digital (SD) adalah sebuah format kartu memori flash. Kartu Secure Digital digunakan dalam alat portabel, seperti PDA, kamera digital dan telepon genggam. Kartu SD dikembangkan oleh SanDisk, Toshiba, dan Panasonic berdasarkan Kartu Multi Media (MMC) yang sudah lebih dulu ada. Selain memiliki sistem pengaman yang lebih bagus daripada MMC, kartu SD juga bisa dengan mudah dibedakan dari MMC karena memiliki ukuran yang lebih tebal dibanding kartu M...
County in Arkansas, United States County in ArkansasLittle River CountyCountyLittle River County Courthouse in AshdownLocation within the U.S. state of ArkansasArkansas's location within the U.S.Coordinates: 33°41′53″N 94°13′18″W / 33.698055555556°N 94.221666666667°W / 33.698055555556; -94.221666666667Country United StatesState ArkansasFoundedMarch 5, 1867Named forLittle River[1]SeatAshdownLargest cityAshdownArea • Total565...
Asosiasi Sepak Bola ArgentinaCONMEBOLDidirikan1893Kantor pusatBuenos AiresBergabung dengan FIFA1912Bergabung dengan CONMEBOL1916PresidenJulio GrondonaWebsitewww.afa.org.ar Asosiasi Sepak Bola Argentina (Spanyol: Asociación del Fútbol Argentino (AFA)) adalah badan pengendali sepak bola di Argentina. Badan ini menyelenggarakan beberapa kompetisi di Argentina, dan liganya adalah salah satu yang paling terkenal, yakni Divisi Utama Argentina. AFA didirikan pada 1893 dengan nama Liga Sepak Bo...
رباعي قوة الحزمة الشعاعية، مصمم لاستخدام الترددات الراديوية. هذا النوع من أنبوب طاقة الشعاع لا يستخدم ألواح حصر الشعاع. 6L6 نوع شعاع رباعي هياكل القطب الكهربائي مع قطع الأنود مفتوحة. لوحات حصر الشعاع هي الهياكل ذات اللون الفضي إلى اليسار واليمين مقارنة خصائص الأنود لأنبوب ط...
Disambiguazione – Se stai cercando il concetto economico, vedi Austerità. Questa voce o sezione sull'argomento storia ha un'ottica geograficamente limitata. Contribuisci ad ampliarla o proponi le modifiche in discussione. Se la voce è approfondita, valuta se sia preferibile renderla una voce secondaria, dipendente da una più generale. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sugli argomenti storia contemporanea e economia non cita le fonti necess...
American basketball and football coach For the baseball player, see Eddie Hickey (baseball). Eddie HickeyHickey from the 1961 “Hilltop”Biographical detailsBorn(1902-12-20)December 20, 1902Reynolds, Nebraska, U.S.DiedDecember 5, 1980(1980-12-05) (aged 77)Mesa, Arizona, U.S.Coaching career (HC unless noted)Basketball1935–1943Creighton1946–1947Creighton1947–1958Saint Louis1958–1964MarquetteFootball1934Creighton Administrative career (AD unless noted)1962–1964Marquette Head coa...
Arundhati NagNag pada 2010LahirArundhati Rao6 Juli 1956 (umur 67)Delhi, IndiaKebangsaanIndiaPekerjaanAktrisTahun aktif1973–presentSuami/istriShankar Nag (m. 1980; meninggal 1990)Anak1 Arundhati Nag (née Rao; lahir 6 Juli 1956)[2] adalah seorang aktris film dan teater India. Dia telah terlibat dengan Teater multibahasa di India, selama lebih dari 25 tahun, pertama di Mumbai di mana dia terlibat dengan Asosiasi Teater Rak...
Cet article est une ébauche concernant la bière et le Viêt Nam. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article présente des problèmes à corriger. Vous pouvez aider à l'améliorer ou bien discuter des problèmes sur sa page de discussion. Il ne cite pas suffisamment ses sources. Vous pouvez indiquer les passages �...
Indian pay television channel Television channel Sony BBC EarthCountryIndiaHeadquartersMumbai, MaharashtraProgrammingLanguage(s)EnglishHindiTamilTeluguPicture format1080i (HDTV) 576i (SDTV)OwnershipOwnerCulver Max Entertainment(50%)BBC India (50%)ParentCulver Max EntertainmentSister channelsSee List of channels owned by Culver MaxHistoryLaunched6 March 2017LinksWebsitesonybbcearth.comAvailabilityStreaming mediaSonyLIVWatch Sony BBC Earth Live (India) Sony BBC Earth is an Indian pay television...
Міністерство оборони України (Міноборони) Емблема Міністерства оборони та Прапор Міністерства оборони Будівля Міністерства оборони у КиєвіЗагальна інформаціяКраїна УкраїнаДата створення 24 серпня 1991Попередні відомства Міністерство оборони СРСР Народний комісарі...
Swiss urban legend Le Loyon, also known as the Ghost of Maules, is an urban legend concerning a supposed humanoid figure that was said to roam the forest near the village of Maules (Sâles), Switzerland. Le Loyon was described as a tall humanoid creature dressed in a boilersuit, a cloak and a gas mask which covers its entire head. Appearance A GP-5 gas mask similar to the one Le Loyon was described to wear Supposed eye-witnesses described Le Loyon as a tall humanoid figure standing at around ...
Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...
KōgenKaisar JepangBerkuasa214 – 158 SM (traditional)[1]PendahuluKaisar KōreiPenerusKaisar KaikaKelahiran-Kematian-PemakamanTsurugi no ike no shima no e no misasagi (Nara) Kaisar Kōgen (孝元天皇code: ja is deprecated , Kōgen-tennō) juga dikenal sebagai Ooyamatonekohikokunikuru no Mikoto, adalah Kaisar Jepang yang kedelapan,[2] menurut urutan tradisional suksesi.[3] Tidak ada catatan kapan dia hidup, tetapi diperkirakan dia memerintah mulai tahun 214 SM – 15...
الضرائب في الولايات المتحدة الضرائب الفيدرالية ضريبة الحد الأدنى البديلة ضريبة أرباح رأس المال ضريبة الشركات الضريبة العقارية الضرائب الغير مباشرة ضريبة الأجور الإيرادات الضريبية ضريبة الهديا ضريبة الدخل دائرة الإيرادات الداخلية قانون الإيرادات الداخلية نماذج الضرائ�...
2021 compilation album by Stray KidsSKZ2021Compilation album by Stray KidsReleasedDecember 23, 2021 (2021-12-23)Studio JYPE (Seoul) The Vibe (Seoul) In Grid (Seoul) 821 Sound (Seoul) U Productions (Seoul) Length51:16LanguageKoreanLabelJYPProducer 3Racha Versachoi Kim Park Chella Glory Face (Full8loom) This N That Lee Woo-min 'Collapsedone' Space One Frants Slo Hong Ji-sang Doplamingo J;Key Edmmer Alom Stray Kids chronology Christmas EveL(2021) SKZ2021(2021) Oddinary(202...