Hilbert–Speiser theorem

In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of Q, which by the Kronecker–Weber theorem are isomorphic to subfields of cyclotomic fields.

Hilbert–Speiser Theorem. A finite abelian extension K/Q has a normal integral basis if and only if it is tamely ramified over Q.

This is the condition that it should be a subfield of Q(ζn) where n is a squarefree odd number. This result was introduced by Hilbert (1897, Satz 132, 1998, theorem 132) in his Zahlbericht and by Speiser (1916, corollary to proposition 8.1).

In cases where the theorem states that a normal integral basis does exist, such a basis may be constructed by means of Gaussian periods. For example if we take n a prime number p > 2, Q(ζp) has a normal integral basis consisting of all the p-th roots of unity other than 1. For a field K contained in it, the field trace can be used to construct such a basis in K also (see the article on Gaussian periods). Then in the case of n squarefree and odd, Q(ζn) is a compositum of subfields of this type for the primes p dividing n (this follows from a simple argument on ramification). This decomposition can be used to treat any of its subfields.

Cornelius Greither, Daniel R. Replogle, and Karl Rubin et al. (1999) proved a converse to the Hilbert–Speiser theorem:

Each finite tamely ramified abelian extension K of a fixed number field J has a relative normal integral basis if and only if J =Q.

There is an elliptic analogue of the theorem proven by Anupam Srivastav and Martin J. Taylor (1990). It is now called the Srivastav-Taylor theorem  (1996).

References

  • Agboola, A. (1996), "Torsion points on elliptic curves and Galois module structure", Invent Math, 123: 105–122, Bibcode:1996InMat.123..105A, doi:10.1007/BF01232369
  • Greither, Cornelius; Replogle, Daniel R.; Rubin, Karl; Srivastav, Anupam (1999), "Swan modules and Hilbert–Speiser number fields", Journal of Number Theory, 79: 164–173, doi:10.1006/jnth.1999.2425
  • Hilbert, David (1897), "Die Theorie der algebraischen Zahlkörper", Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 4: 175–546, ISSN 0012-0456
  • Hilbert, David (1998), The theory of algebraic number fields, Berlin, New York: Springer-Verlag, ISBN 978-3-540-62779-1, MR 1646901
  • Speiser, A. (1916), "Gruppendeterminante und Körperdiskriminante", Mathematische Annalen, 77 (4): 546–562, doi:10.1007/BF01456968, ISSN 0025-5831
  • Srivastav, Anupam; Taylor, Martin J. (1990), "Elliptic curves with complex multiplication and Galois module structure", Invent Math, 99: 165–184, Bibcode:1990InMat..99..165S, doi:10.1007/BF01234415

Read other articles:

Yosua 23Kitab Yosua lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab YosuaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen6← pasal 22 pasal 24 → Yosua 23 (disingkat Yos 23) adalah pasal kedua puluh tiga Kitab Yosua dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen yang memuat riwayat Yosua dalam memimpin orang Israel menduduki tanah Kanaan.[1] Pasal ini berisi pidato perpisahan Yosua kepada para pemimpin bangsa Israel.[...

 

 

Irvansyah Kepala Badan Keamanan Laut ke-10PetahanaMulai menjabat 13 September 2023 PendahuluAan KurniaPenggantiPetahanaPanglima Komando Gabungan Wilayah Pertahanan I ke-4Masa jabatan16 Januari 2023 – 17 Juli 2023 PendahuluMuhammad AliPenggantiErwin S. AldedharmaPanglima Komando Armada III ke-3Masa jabatan23 Juni 2021 – 16 Januari 2023 PendahuluDadi HartantoPenggantiAgus HariadiPanglima Komando Lintas Laut MiliterMasa jabatan18 November 2020 – 2...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2019) منتخب أوغندا لاتحاد الرغبي اللقب Rugby Cranes بلد الرياضة أوغندا  تاريخ التأسيس 24 ...

United States district court 41°49′33″N 71°24′38″W / 41.825811°N 71.410454°W / 41.825811; -71.410454 United States District Court for the District of Rhode Island(D.R.I.)LocationFederal Building(Providence)EstablishedJune 23, 1790Judges3Chief JudgeJohn J. McConnell Jr.Officers of the courtOfficial website The courthouse for the United States District Court for the District of Rhode Island is located in the Federal Building in Providence. The United St...

 

 

Village in Michigan, United StatesEmpire, MichiganVillageView of Sleeping Bear Dunes from Empire BluffsLocation within Leelanau CountyEmpireLocation within the state of MichiganCoordinates: 44°48′39″N 86°0′33″W / 44.81083°N 86.00917°W / 44.81083; -86.00917Country United StatesState MichiganCounty LeelanauTownshipEmpireArea[1] • Total1.12 sq mi (2.90 km2) • Land1.03 sq mi (2.66 km2)...

 

 

This article is about the building at Duke University. For other uses, see Ark (disambiguation). The ArkThe Ark in 2019Former namesAngier B. Duke GymnasiumLocation14 Epworth LaneDurham, NC 27708Coordinates36°00′26″N 78°54′49″W / 36.007143°N 78.913558°W / 36.007143; -78.913558OwnerDuke UniversityOperatorDuke UniversityConstructionBuilt1898TenantsDuke Blue Devils (NCAA) 1906–1923 The Ark is a building on the East Campus of Duke University in Durham, North C...

American politician Samuel Page BensonFrom 1882's History of Bowdoin College by Cleaveland and Packard.Member of U.S. House of Representativesfrom Maine's 4th districtIn officeMarch 4, 1853 – March 3, 1857Preceded byIsaac ReedSucceeded byFreeman H. Morse6th Secretary of State of MaineIn office1838–1838GovernorEdward KentPreceded byAsaph R. NicholsSucceeded byAsaph R. Nichols9th Secretary of State of MaineIn office1839–1839GovernorJohn FairfieldPreceded byPhilip C. JohnsonSuccee...

 

 

Nemzeti Bajnokság I 1978-1979 Competizione Nemzeti Bajnokság I Sport Calcio Edizione Organizzatore MLSZ Luogo  Ungheria Partecipanti 18 Risultati Vincitore  Újpest(18º titolo) Promozioni  Salgótarján Bp. Vasas Izzó Retrocessioni  Csepel Haladás Bp. Vasas Izzó Statistiche Miglior marcatore László Fekete (31) Incontri disputati 306 Gol segnati 883 (2,89 per incontro) Cronologia della competizione 1977-1978 1979-1980 Manuale L'edizione 1978-79 d...

 

 

2001 novel by Nick Walters Superior Beings AuthorNick WaltersSeriesDoctor Who book:Past Doctor AdventuresRelease number43SubjectFeaturing:Fifth DoctorPeriSet inPeriod betweenPlanet of Fire and The Caves of AndrozaniPublisherBBC BooksPublication dateJune 2001Pages280ISBN0-563-53830-9Preceded byAsylum Followed byByzantium!  Superior Beings is a BBC Books original novel written by Nick Walters and based on the long-running British science fiction television series Doctor...

Limersheimcomune Limersheim – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Basso Reno ArrondissementSélestat-Erstein CantoneErstein AmministrazioneSindacoStéphane Schaal TerritorioCoordinate48°27′N 7°38′E / 48.45°N 7.633333°E48.45; 7.633333 (Limersheim)Coordinate: 48°27′N 7°38′E / 48.45°N 7.633333°E48.45; 7.633333 (Limersheim) Superficie5,55 km² Abitanti664[1] (2019) Densità119,64 ab./km² Com...

 

 

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

 

 

Andover CanalRemains of the Andover canal near RomseySpecificationsLength22 miles (35 km)Maximum boat length65 ft 0 in (19.81 m)Maximum boat beam8 ft 6 in (2.59 m)Locks24(level dropped 179 ft (55 m))StatusRailway built over routeHistoryFormer namesAndevor CanalOriginal ownerAndover Canal Navigation CompanyPrincipal engineerRobert WhitworthDate of act1789Date of first use1794Date closed1859GeographyStart pointAndoverEnd pointSouthampton WaterConnec...

UEFA Women's Champions League 2018-2019 Competizione UEFA Women's Champions League Sport Calcio Edizione 18ª Organizzatore UEFA Date dal 7 agosto 2018al 18 maggio 2019 Partecipanti 60 Nazioni 48 Sito web UEFA Women's Champions League Risultati Vincitore Olympique Lione(6º titolo) Secondo Barcellona Statistiche Miglior marcatore Pernille Harder (8) Incontri disputati 121 Gol segnati 471 (3,89 per incontro) Cronologia della competizione 2017-2018 2019-2020 Manuale La UEFA W...

 

 

Infinite integer series where the next number is the sum of the two preceding it Not to be confused with Lucas sequences, the general class of sequences to which the Lucas numbers belong. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2019) (Learn how and when to remove this message) The Lucas spiral, made with quarter-arcs, is a good approximation ...

 

 

Grade I listed palladian villa Orleans HouseLocation in London Borough of Richmond upon ThamesGeneral informationStatusPartially demolished: the octagon gallery and its service wing remain and are Grade I listedArchitectural stylePalladianTown or cityTwickenham, London Borough of Richmond upon ThamesCountryEngland, UKCoordinates51°26′50″N 0°19′08″W / 51.44731°N 0.319022°W / 51.44731; -0.319022Construction started1702Completed1737Demolished1926ClientJames J...

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari USS George H.W. Bush di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pen...

 

 

Luigi Monza Luigi Monza (22 Juni 1898 – 29 September 1954) adalah seorang imam Katolik Roma Italia dan pendiri Kongregasi Istituto Secolare delle Piccole Apostole della Carità (Secular Institute of the Little Apostles of Charity). Ia lahir dalam sebuah keluarga petani sederhana di kota Varese, Lombardi, Italia Utara pada tanggal 22 Juni 1898. Ia masuk seminari pada usia delapan belas tahun dan ditahbiskan menjadi imam praja Keuskupan Agung Milan pada tanggal 19 September 1925...

 

 

Elastic cartilageA cross section of mammalian elastic cartilageLateral side of the auricleDetailsPart ofOuter ear, Eustachian tube and epiglottisIdentifiersLatincartilago elasticaMeSHD051472THH2.00.03.5.00018 FMA64785Anatomical terminology[edit on Wikidata] Elastic cartilage, fibroelastic cartilage or yellow fibrocartilage [1] is a type of cartilage present in the pinnae (auricles) of the ear giving it shape,[2] provides shape for the lateral region of the external auditor...

ヨハネス・ゲールツが描いたオーディン。足元にゲリとフレキがみえる。 ゲリ (Geri/Gere) とフレキ (Freki/Freke) は、北欧神話に登場する神オーディンに付き添う一対の狼である。ゲリ、フレキの名はともに「貪欲なもの[1]」の意味と解釈される。 スノリ・ストゥルルソンが書いた『散文のエッダ』第一部『ギュルヴィたぶらかし』第38章には、ヴァルハラにいる時、�...

 

 

ONE PIECE > ONE PIECE (アニメ) > ONE PIECE エピソードオブメリー 〜もうひとりの仲間の物語〜 この項目には、一部のコンピュータや閲覧ソフトで表示できない文字(Microsoftコードページ932(はしご高))が含まれています(詳細)。 ONE PIECE エピソードオブメリー〜もうひとりの仲間の物語〜 アニメ 原作 尾田栄一郎 監督 所勝美 脚本 上坂浩彦 キャラクターデザイ...