Hilbert's fifth problem

Hilbert's fifth problem is the fifth mathematical problem from the problem list publicized in 1900 by mathematician David Hilbert, and concerns the characterization of Lie groups.

The theory of Lie groups describes continuous symmetry in mathematics; its importance there and in theoretical physics (for example quark theory) grew steadily in the twentieth century. In rough terms, Lie group theory is the common ground of group theory and the theory of topological manifolds. The question Hilbert asked was an acute one of making this precise: is there any difference if a restriction to smooth manifolds is imposed?

The expected answer was in the negative (the classical groups, the most central examples in Lie group theory, are smooth manifolds). This was eventually confirmed in the early 1950s. Since the precise notion of "manifold" was not available to Hilbert, there is room for some debate about the formulation of the problem in contemporary mathematical language.

Formulation of the problem

A modern formulation of the problem (in its simplest interpretation) is as follows:[1]

Let G be a topological group that is also a topological manifold (that is, locally homeomorphic to a Euclidean space). Does it follow that G must be isomorphic (as a topological group) to a Lie group?

An equivalent formulation of this problem closer to that of Hilbert, in terms of composition laws, goes as follows:[2]

Let VU be open subsets of Euclidean space, such that there is a continuous function f : V × VU satisfying the group axiom of associativity. Does it follow that f must be smooth (up to continuous reparametrisation)?

In this form the problem was solved by Montgomery–Zippin and Gleason.

A stronger interpretation (viewing G as a transformation group rather than an abstract group) results in the Hilbert–Smith conjecture about group actions on manifolds, which in full generality is still open. It is known classically for actions on 2-dimensional manifolds and has recently been solved for three dimensions by John Pardon.

Solution

The first major result was that of John von Neumann in 1933,[3] giving an affirmative answer for compact groups. The locally compact abelian group case was solved in 1934 by Lev Pontryagin. The final resolution, at least in the interpretation of what Hilbert meant given above, came with the work of Andrew Gleason, Deane Montgomery and Leo Zippin in the 1950s.

In 1953, Hidehiko Yamabe obtained further results about topological groups that may not be manifolds:[a]

Every locally compact connected group is the projective limit of a sequence of Lie groups. Further, it is a Lie group if it has no small subgroups.

It follows that every locally compact group contains an open subgroup that is a projective limit of Lie groups, by van Dantzig's theorem (this last statement is called the Gleason–Yamabe Theorem in Tao (2014, Theorem 1.1.17)).

No small subgroups

An important condition in the theory is no small subgroups. A topological group G, or a partial piece of a group like F above, is said to have no small subgroups if there is a neighbourhood N of e containing no subgroup bigger than {e}. For example, the circle group satisfies the condition, while the p-adic integers Zp as additive group does not, because N will contain the subgroups: pkZp, for all large integers k. This gives an idea of what the difficulty is like in the problem. In the Hilbert–Smith conjecture case it is a matter of a known reduction to whether Zp can act faithfully on a closed manifold. Gleason, Montgomery and Zippin characterized Lie groups amongst locally compact groups, as those having no small subgroups.

Infinite dimensions

Researchers have also considered Hilbert's fifth problem without supposing finite dimensionality. This was the subject of Per Enflo's doctoral thesis; his work is discussed in Benyamini & Lindenstrauss (2000, Chapter 17).

See also

Notes

  1. ^ According to Morikuni (1961, p. i), "the final answer to Hilbert’s Fifth Problem"; however this is not so clear since there have been other such claims, based on different interpretations of Hilbert's statement of the problem given by various researchers. For a review of such claims (ignoring the contributions of Yamabe) see Rosinger (1998, pp. xiii–xiv and pp. 169–170)
  1. ^ Tao 2014, Theorem 1.1.13.
  2. ^ Hilbert, David. "5. Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group". Mathematical Problems – via Wikisource.
  3. ^ John, von Neumann (1933). "Die Einführung analytischer parameter in topologischen Gruppen". Annals of Mathematics. 34 (1): 170–190. doi:10.2307/1968347. JSTOR 1968347.

References

Read other articles:

Kristus menyembuhkan orang yang mati sebelah tangannya, Bizantium mosaik. Penyembuhan orang yang mati sebelah tangannya adalah salah satu dari mukjizat-mukjizat Yesus dalam Injil, yang dicatat dalam ketiga Injil Sinoptik, yaitu Matius 12:9–13; Markus 3:1–6; Lukas 6:6–11.[1][2][3][4] Catatan Alkitab Pada suatu hari Sabat Yesus pergi ke rumah ibadat, orang Farisi dan ahli-ahli Taurat sedang mencari alasan untuk menuduh Dia, agar mereka menyaksikan dengan se...

 

Opening to a story that establishes the setting and gives background details This article is about the narrative device. For the compilation-related term, see function prologue. For the computer programming language, see Prolog. For other uses, see Prologue (disambiguation). A prologue or prolog (from Greek πρόλογος prólogos, from πρό pró, before and λόγος lógos, word) is an opening to a story that establishes the context and gives background details, often some earlier sto...

 

Untuk film Britania Raya, lihat The Call of the East (film 1922). The Call of the EastIklan untuk filmSutradaraGeorge MelfordProduserJesse L. LaskySkenarioBeulah Marie DixPemeranSessue HayakawaTsuru AokiJack HoltMargaret LoomisJames CruzeErnest JoySinematograferPercy Hilburn (French)PerusahaanproduksiJesse L. Lasky Feature Play CompanyDistributorParamount PicturesTanggal rilis 15 Oktober 1917 (1917-10-15) Durasi50 menitNegaraAmerika SerikatBahasaBisu (intertitel Inggris) The Call of the ...

George Forsyth Nazionalità  Perù Calcio Ruolo Portiere Termine carriera 2016 Carriera Squadre di club1 2001-2002 Alianza Lima1(-1)2002-2003 Borussia Dortmund II6 (-?)2003 Atl. Universidad12 (-?)2004 Alianza Lima9 (-?)2005→  Sport Boys4 (-?)2006-2007 Alianza Lima34 (-?)2007-2008 Atalanta0 (0)2008-2016 Alianza Lima173 (-?) Nazionale 199? Perù U-15? (-?)199? Perù U-17? (-?)2001 Perù U-202 (-6)2004 Perù U-232 (-4)2003-2014 Perù7 (-12) 1 I due...

 

Voce principale: Associazione Calcio Femminile Trani 80. A.C.F. Sanitas Trani 80Stagione 1985In piedi da sinistra: Paolo Loporchio (presidente), Santino Barbato (allenatore), Angela Coda, Viola Langella, Antonella Carta, Paola Bonato, Rose Reilly (capitano), Luana Pavan; accosciati da sinistra: Nunzio Corrado (massaggiatore), Viviana Bontacchio, Lone Smidt Hansen, Antonella Marrazza, Ulla Bastrup, Adele Marsiletti. Sport calcio Squadra Sanitas Trani 80 Allenatore Santino Barbato Preside...

 

Questa voce sugli argomenti allenatori di pallacanestro statunitensi e cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Ed Macauley Macauley con la maglia dei Boston Celtics Nazionalità  Stati Uniti Altezza 203 cm Peso 84 kg Pallacanestro Ruolo Centro / ala grandeAllenatore Termine carriera 1959 - giocatore1960 - allenatore Hall of fame Naismith Hall of Fame (1960) ...

Bagian dari seriIslam Rukun Iman Keesaan Allah Malaikat Kitab-kitab Allah Nabi dan Rasul Allah Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Balla...

Dalam artikel ini, nama keluarganya adalah Lu. Lu Ching-yaoInformasi pribadiKebangsaanRepublik Tiongkok (Taiwan)Lahir7 Juni 1993 (umur 30)Kaohsiung, TaiwanTempat tinggalKaohsiung, TaiwanTinggi190 cm (6 ft 3 in)PeganganKananGanda putra & campuranPeringkat tertinggi10 (MD 16 November 2017)25 (XD 24 Agustus 2017)Peringkat saat ini13 (MD bersama Yang Po-han 21 Maret 2023) Rekam medali Bulu tangkis putra Mewakili  Tionghoa Taipei Asian Games 2018 Jakarta–Palemba...

 

Spanish television series (2001–2023) This article is about the Spanish TV series. For Argentinian series, see Cuéntame cómo pasó (Argentina). Cuéntame cómo pasóAlso known as Cuéntame Remember When Genre Historical drama Comedy drama Created byMiguel Ángel Bernardeau [es]Starring Imanol Arias Ana Duato Ricardo Gómez María Galiana Pablo Rivero Irene Visedo Narrated byCarlos HipólitoOpening themeCuéntame [es]Country of originSpainOriginal languageSpanishN...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of cycle routes in Wales – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) NCN 5, Conwy The following is a list of cycleways in Wales. This list is incomplete; you can help by adding missing items. (February 2011) Cel...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2020) قمة الرياض العالمية للصحة الرقمية هي مؤتمر دولي استضافته المملكة العربية السعودية عن بعد في أغسطس 2020 على هامش عام الرئاسة السعودية لمجموعة العشرين، ونظمته �...

 

Major League Baseball season Major League Baseball team season 1999 Detroit TigersLeagueAmerican LeagueDivisionCentralBallparkTiger StadiumCityDetroit, MichiganRecord69–92 (.429)Divisional place3rdOwnersMike IlitchGeneral managersRandy SmithManagersLarry ParrishTelevisionWKBD(Frank Beckmann, Al Kaline) FSN Detroit(Kirk Gibson, Josh Lewin)RadioWJR(Ernie Harwell, Jim Price) ← 1998 Seasons 2000 → The 1999 Detroit Tigers season was the team's 121st season and—after ...

 

Economy of RussiaMoscow, the financial center of RussiaCurrencyRussian ruble (RUB or руб or ₽)Fiscal yearCalendar year[1]Trade organizationsWTO, BRICS, EAEU, CIS, GECF, APEC, G20 and othersCountry group Developing country[2] Upper-middle income economy[3] Natural resource-rich Eurasian economy with decreased oil export reliance[1] StatisticsPopulation 147,190,000 (late 2021 census)[4]GDP $2.0 trillion (nominal; 2023 est.)[5] $5.2 trillion ...

Active volcano in California, United States Lassen PeakLassen Peak volcanoHighest pointElevation10,457 ft (3,187 m) NAVD 88[1]Prominence5,229 ft (1,594 m)[2]ListingUS most prominent peaks 113thUS most isolated peaks 91stCalifornia county high points 13thCoordinates40°29′17″N 121°30′18″W / 40.48806°N 121.50500°W / 40.48806; -121.50500[1]GeographyLassen PeakShow map of CaliforniaLassen PeakShow map of...

 

Susan StrasbergStrasberg, 1950-anLahirSusan Elizabeth Strasberg(1938-05-22)22 Mei 1938New York City, A.S.Meninggal21 Januari 1999(1999-01-21) (umur 60)New York City, A.S.KebangsaanAmerikaPekerjaanAktrisTahun aktif1953–1992Suami/istriChristopher Jones ​ ​(m. 1965; c. 1968)​Anak1Orang tuaLee StrasbergPaula StrasbergKerabatJohn Strasberg (saudara) Susan Elizabeth Strasberg (22 Mei 1938 – 21 Januari 1999) adalah seorang ...

 

Chronologies Données clés 1909 1910 1911  1912  1913 1914 1915Décennies :1880 1890 1900  1910  1920 1930 1940Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

Athletics at the2010 Commonwealth GamesTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemenwomen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenDiscus throwmenwomenHammer throwmenwomenJavelin throwmenwomenCombined eventsHept...

 

TT278Tomba di AmenemhabPlanimetria schematica della tomba TT278[N 1]CiviltàAntico Egitto Utilizzotomba EpocaPeriodo ramesside LocalizzazioneStato Egitto LocalitàLuxor AmministrazionePatrimonioNecropoli di Tebe EnteMinistero delle Antichità Visitabileno Modifica dati su Wikidata · Manuale Necropoli di Tebe La posizione della necropoli di Tebe in Egitto TT278 (Theban Tomb 278) è la sigla che identifica una delle Tombe dei Nobili[N 2][1] ubicate nell'area d...