Havel–Hakimi algorithm

The Havel–Hakimi algorithm is an algorithm in graph theory solving the graph realization problem. That is, it answers the following question: Given a finite list of nonnegative integers in non-increasing order, is there a simple graph such that its degree sequence is exactly this list? A simple graph contains no double edges or loops.[1] The degree sequence is a list of numbers in nonincreasing order indicating the number of edges incident to each vertex in the graph.[2] If a simple graph exists for exactly the given degree sequence, the list of integers is called graphic. The Havel-Hakimi algorithm constructs a special solution if a simple graph for the given degree sequence exists, or proves that one cannot find a positive answer. This construction is based on a recursive algorithm. The algorithm was published by Havel (1955), and later by Hakimi (1962).

The algorithm

The Havel-Hakimi algorithm is based on the following theorem.

Let be a finite list of nonnegative integers that is nonincreasing. Let be a second finite list of nonnegative integers that is rearranged to be nonincreasing. List is graphic if and only if list is graphic.

If the given list is graphic, then the theorem will be applied at most times setting in each further step . Note that it can be necessary to sort this list again. This process ends when the whole list consists of zeros. Let be a simple graph with the degree sequence : Let the vertex have degree ; let the vertices have respective degrees ; let the vertices have respective degrees . In each step of the algorithm, one constructs the edges of a graph with vertices —i.e., if it is possible to reduce the list to , then we add edges . When the list cannot be reduced to a list of nonnegative integers in any step of this approach, the theorem proves that the list from the beginning is not graphic.

Proof

The following is a summary based on the proof of the Havel-Hakimi algorithm in Invitation to Combinatorics (Shahriari 2022).

To prove the Havel-Hakimi algorithm always works, assume that is graphic, and there exists a simple graph with the degree sequence . Then we add a new vertex adjacent to the vertices with degrees to obtain the degree sequence .

To prove the other direction, assume that is graphic, and there exists a simple graph with the degree sequence and vertices . We do not know which vertices are adjacent to , so we have two possible cases.

In the first case, is adjacent to the vertices in . In this case, we remove with all its incident edges to obtain the degree sequence .

In the second case, is not adjacent to some vertex for some in . Then we can change the graph so that is adjacent to while maintaining the same degree sequence . Since has degree , the vertex must be adjacent to some vertex in for : Let the degree of be . We know , as the degree sequence is in non-increasing order.

Since , we have two possibilities: Either , or . If , then by switching the places of the vertices and , we can adjust so that is adjacent to instead of If , then since is adjacent to more vertices than , let another vertex be adjacent to and not . Then we can adjust by removing the edges and , and adding the edges and . This modification preserves the degree sequence of , but the vertex is now adjacent to instead of . In this way, any vertex not connected to can be adjusted accordingly so that is adjacent to while maintaining the original degree sequence of . Thus any vertex not connected to can be connected to using the above method, and then we have the first case once more, through which we can obtain the degree sequence . Hence, is graphic if and only if is also graphic.

Examples

Let be a nonincreasing, finite degree sequence of nonnegative integers. To test whether this degree sequence is graphic, we apply the Havel-Hakimi algorithm:

First, we remove the vertex with the highest degree — in this case, —  and all its incident edges to get (assuming the vertex with highest degree is adjacent to the vertices with next highest degree). We rearrange this sequence in nonincreasing order to get . We repeat the process, removing the vertex with the next highest degree to get and rearranging to get . We continue this removal to get , and then . This sequence is clearly graphic, as it is the simple graph of isolated vertices.

To show an example of a non-graphic sequence, let be a nonincreasing, finite degree sequence of nonnegative integers. Applying the algorithm, we first remove the degree vertex and all its incident edges to get . Already, we know this degree sequence is not graphic, since it claims to have vertices with one vertex not adjacent to any of the other vertices; thus, the maximum degree of the other vertices is . This means that two of the vertices are connected to all the other vertices with the exception of the isolated one, so the minimum degree of each vertex should be ; however, the sequence claims to have a vertex with degree . Thus, the sequence is not graphic.

For the sake of the algorithm, if we were to reiterate the process, we would get which is yet more clearly not graphic. One vertex claims to have a degree of , and yet only two other vertices have neighbors. Thus the sequence cannot be graphic.

See also

Notes

  1. ^ From Shahriari (2022, p. 48): "Definition 2.17 (Graphs & Subgraphs). A simple graph (or just a graph) G is a pair of sets (V, E) where V is a nonempty set called the set of vertices of G, and E is a (possibly empty) set of unordered pairs of distinct elements of V. The set E is called the set of edges of G. If the number of vertices of G is finite, then G is a finite graph (or a finite simple graph)."
  2. ^ From Shahriari (2022, p. 355): "Definition 10.6 (The degree sequence of a graph; Graphic sequences). The degree sequence of a graph is the list of the degrees of its vertices in non-increasing order. A non-increasing sequence of non-negative integers is called graphic, if there exists a simple graph whose degree sequence is precisely that sequence.”

References

  • Havel, Václav (1955), "A remark on the existence of finite graphs", Časopis pro pěstování matematiky (in Czech), 80 (4): 477–480, doi:10.21136/CPM.1955.108220
  • Hakimi, S. L. (1962), "On realizability of a set of integers as degrees of the vertices of a linear graph. I", Journal of the Society for Industrial and Applied Mathematics, 10 (3): 496–506, doi:10.1137/0110037, MR 0148049.
  • Shahriari, Shahriar (2022), Invitation to Combinatorics, Cambridge U. Press.
  • West, Douglas B. (2001). Introduction to graph theory. Second Edition. Prentice Hall, 2001. 45-46.

Read other articles:

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Jinhua – berita · surat kabar · buku&#...

 

Fokker F27Fokker F27-500 milik Merpati Nusantara di Bandara Ngurah Rai (2004)TipePesawat turbopropTerbang perdana1955Diperkenalkan1958StatusTidak diproduksi, status aktifTahun produksi1955-1987Jumlah produksi586VarianFairchild F-27/FH-227 |} Fokker F27 'Friendship' merupakan sebuah pesawat turboprop didesain dan dibuat oleh perusahaan pesawat terbang Belanda, Fokker. Sejarah Model Fokker F27 dimulai pada 1950-an sebagai pengganti pesawat yang sukses, DC-3. Produksi menilai konfigurasi nomor t...

 

ДостопримечательностьРыбинская каланча 58°02′48″ с. ш. 38°51′10″ в. д.HGЯO Страна  Россия Город Рыбинск Тип здания Пожарная каланча Архитектурный стиль Поздний классицизм, модерн Автор проекта И. К. Хотин, П. Я. Паньков Строитель Фирма С. А. Букетова Основатель П. Я....

Argentine field hockey player You can help expand this article with text translated from the corresponding article in Spanish. (October 2018) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a top...

 

Annual LGBTQ+ event in Brighton and Hove, England Brighton & Hove PrideCrowds at Brighton Pride in 2016FrequencyAnnuallyLocation(s)Brighton, EnglandYears active1972–presentFounded1972; 52 years ago (1972)FoundersSussex Gay Liberation FrontMost recent5 August 2022 (2022-08-05) – 7 August 2022 (2022-08-07)Next event4 August 2023 (2023-08-04) – 6 August 2023 (2023-08-06)Attendance500,000Websitehttp://www.brig...

 

Village in Tokke, Norway Village in Eastern Norway, NorwayÅmdals VerkVillageÅmdals VerkLocation of the villageShow map of TelemarkÅmdals VerkÅmdals Verk (Norway)Show map of NorwayCoordinates: 59°22′34″N 8°02′11″E / 59.37613°N 8.03645°E / 59.37613; 8.03645CountryNorwayRegionEastern NorwayCountyTelemarkDistrictVest-TelemarkMunicipalityTokke MunicipalityElevation[1]425 m (1,394 ft)Time zoneUTC+01:00 (CET) • Summer (DST)UTC+02:...

Pemandangan nekropolis Saqqara, meliputi Piramid bertangga Djoser (tengah). Gundukan sebelah kiri jauh adalah Piramid Unas; di kanannya adalah Piramid Userkaf. Saqqara, Sakkara, Saqqarah (Arab: سقارة) adalah sebuah situs pemakaman Mesir Kuno yang terletak di Mesir. Di situs ini terdapat sebuah piramid bertangga tertua di dunia (29°52′17″N 31°12′59″E / 29.871264°N 31.216381°E / 29.871264; 31.216381). Letak Saqqara sekitar 30 km selatan kota Kairo. ...

 

American pastor and politician (born 1969) The Reverend DoctorRaphael WarnockUnited States Senatorfrom GeorgiaIncumbentAssumed office January 20, 2021Serving with Jon OssoffPreceded byKelly Loeffler Personal detailsBornRaphael Gamaliel Warnock (1969-07-23) July 23, 1969 (age 54)Savannah, Georgia, U.S.Political partyDemocraticSpouse Oulèye Ndoye ​ ​(m. 2016; div. 2020)​Children2Residence(s)Atlanta, Georgia, U.S.EducationMorehous...

 

Dewan Perwakilan Rakyat DaerahKabupaten NagekeoDewan Perwakilan RakyatKabupaten Nagekeo2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai9 September 2019PimpinanKetuaMarselinus F. Ajo Bupu (PDI-P) sejak 7 Oktober 2019 Wakil Ketua IYosefus Dhenga (NasDem) sejak 7 Oktober 2019 Wakil Ketua IIKristianus Du’a Wea (Golkar) sejak 7 Oktober 2019 KomposisiAnggota25Partai & kursi  PDI-P (4)   NasDem (3)   PKB (3)   Hanura ...

Founder of the Maurya Empire (350–295 BCE) Sandracottus redirects here. For the genus of beetle, see Sandracottus (beetle). For other uses, see Chandragupta (disambiguation). Chandragupta MauryaChakravartinA modern statue depicting Chandragupta Maurya, Laxminarayan Temple, Delhi1st Mauryan EmperorReignc. 324 or 321 – c. 297 BCE[1][2]Coronationc. 324 or 321 BCEPredecessorDhana NandaSuccessorBindusara Maurya[3]Bornc. 350 BCEPataliputraDiedc. 295 BCE...

 

2012 Indian filmVillainFilm posterDirected byM. S. RameshProduced byYogish HunsurStarringAudityaRagini DwivediCinematographyDasari SeenuEdited byS. ManoharMusic byGurukiranProductioncompanySaraswathi EntertainersRelease date 25 May 2012 (2012-05-25) CountryIndiaLanguageKannada Villain (Kannada: ವಿಲನ್) is a 2012 Indian Kannada action film written and directed by M. S. Ramesh and produced by Yogish Hunsur under the banner Saraswathi Entertainers. The film stars Auditya...

 

2020年夏季奥林匹克运动会科索沃代表團科索沃国旗IOC編碼KOSNOC科索沃奧林匹克委員會網站www.noc-kosovo.org(英文)(阿爾巴尼亞文)(塞爾維亞文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員11參賽項目6个大项旗手开幕式:阿基爾·賈科瓦(英语:Akil Gjakova)和瑪琳達·開爾門蒂(柔道)[1]闭幕式�...

† Палеопропитеки Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:�...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) لامار توماس معلومات شخصية الميلاد 12 فبراير 1970 (54 سنة)  أوكالا  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة ميامي  المهنة لاعب كرة قد�...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

This article is about the mainline station. For the Paris Métro station, see Bercy (Paris Métro). Terminal railway station in Paris, France Paris BercyBourgogne – Pays d'AuvergneExterior of stationGeneral informationLocation48 bis Boulevard de BercyParisFranceCoordinates48°50′21″N 2°22′59″E / 48.839039°N 2.383081°E / 48.839039; 2.383081Owned bySNCFLine(s)Paris–Marseille railwayTracks6 + car loading tracksConnections    RATP Bus: &...

 

San Pedro de HuacarpanadistrettoMunicipalidad distrital de San Pedro de Huacarpana LocalizzazioneStato Perù Regione Ica ProvinciaChincha AmministrazioneCapoluogoSan Pedro de Huacarpana Data di istituzione22 settembre 1951 TerritorioCoordinatedel capoluogo13°02′56.09″S 75°38′52.43″W13°02′56.09″S, 75°38′52.43″W (San Pedro de Huacarpana) Altitudine3 796 m s.l.m. Superficie222,45 km² Abitanti1 641 (2005) Densità7,38 ab./km² Altre informa...

 

Computer operating system Main article: VM (operating system) Operating system z/VMDeveloperIBMOS familyVM familyWorking stateCurrentSource modelClosed sourceLatest release7.3 / 16 September 2022[1]LicenseProprietaryOfficial websitewww.ibm.com/products/zvm History of IBM mainframe operating systems Early mainframe computer OSes GM OS & GM-NAA I/O (1955) BESYS (1957) UMES (1958) SOS (1959) IBSYS (1960) MIT CTSS (1961) 7040/7044 Operating System (16/32K) (7040-PR-150) 1410/7010 Oper...

Bridge in New York City Manhattan BridgeView from Manhattan towards Brooklyn, 2022Coordinates40°42′25″N 73°59′26″W / 40.7070°N 73.9905°W / 40.7070; -73.9905 (Manhattan Bridge)Carries 7 lanes of roadway 4 tracks of the ​​​ trains of the New York City Subway Pedestrians and bicycles Streetcars (until 1929) CrossesEast RiverLocaleNew York City (Manhattan–Brooklyn)Maintained byNew York City Department of TransportationID number22...

 

Santa Marina di BitiniaSimulacro in legno di santa Marina vergine, patrona e protettrice di Polistena, Reggio Calabria Vergine e monaca  NascitaBitinia, 725 circa MorteLibano, 750 circa Venerata daTutte le Chiese che ammettono il culto dei santi Santuario principaleDuomo di Santa Marina a Polistena Ricorrenza18 giugno e 17 luglio (Chiesa Cattolica) AttributiAbito Monacale, crocifisso, giglio e bambino di nome Fortunato Patrona divedi Patronati Manuale Marina di Bitinia (Bitinia, 725...