Hartogs's theorem on separate holomorphicity

In mathematics, Hartogs's theorem is a fundamental result of Friedrich Hartogs in the theory of several complex variables. Roughly speaking, it states that a 'separately analytic' function is continuous. More precisely, if is a function which is analytic in each variable zi, 1 ≤ in, while the other variables are held constant, then F is a continuous function.

A corollary is that the function F is then in fact an analytic function in the n-variable sense (i.e. that locally it has a Taylor expansion). Therefore, 'separate analyticity' and 'analyticity' are coincident notions, in the theory of several complex variables.

Starting with the extra hypothesis that the function is continuous (or bounded), the theorem is much easier to prove and in this form is known as Osgood's lemma.

There is no analogue of this theorem for real variables. If we assume that a function is differentiable (or even analytic) in each variable separately, it is not true that will necessarily be continuous. A counterexample in two dimensions is given by

If in addition we define , this function has well-defined partial derivatives in and at the origin, but it is not continuous at origin. (Indeed, the limits along the lines and are not equal, so there is no way to extend the definition of to include the origin and have the function be continuous there.)

References

  • Steven G. Krantz. Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, Rhode Island, 1992.
  • Fuks, Boris Abramovich (1963). Theory of Analytic Functions of Several Complex Variables. American Mathematical Society. ISBN 978-1-4704-4428-0.
  • Hörmander, Lars (1990) [1966], An Introduction to Complex Analysis in Several Variables (3rd ed.), North Holland, ISBN 978-1-493-30273-4

This article incorporates material from Hartogs's theorem on separate analyticity on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

Ini adalah nama Korea; marganya adalah Lee. Lee Yu-riLahir28 Januari 1980 (umur 44)Eungam, Eunpyeong, Seoul, Korea SelatanPendidikanUniversitas Seni Rupa dan Desain KyewonPekerjaanPemeranTahun aktif2001–kiniAgenThe Jun EntertainmentSuami/istriJo Kye-hyun ​(m. 2010)​Nama KoreaHangul이유리 Hanja李幼梨 Alih AksaraI Yu-riMcCune–ReischauerI Yuri Situs webOfficial website Lee Yu-ri (lahir 28 Januari 1980) adalah seorang pemeran asal Korea Selatan. Le...

 

Halaman ini berisi artikel tentang pendeteksi sinyal. Untuk pembatasan komunikasi dan informasi, lihat Penyensoran. Untuk fungsi yang mirip dalam lingkup biologis, lihat Reseptor (biokimia). Sensor suhu ruangan jenis termokopel Sensor atau pengindra[1] adalah elemen yang mengubah sinyal fisik/kimia menjadi sinyal elektronik. Umumnya sensor dibentuk dari transduser yang telah mengubah besaran fisik atau kimia tersebut menjadi bentuk lain terlebih dahulu. Pada saat ini, sensor tersebut ...

 

2000 meeting among world leaders Heads of state at the summit The Millennium Summit was a meeting among many world leaders, lasting three days from 6 to 8 September 2000,[1][2] held at the United Nations headquarters in New York City. Its purpose was to discuss the role of the United Nations at the turn of the 21st century.[3] At the meeting, world leaders ratified the United Nations Millennium Declaration.[4] This meeting was the largest gathering of world lea...

Mohammad Yasin Anggota Parlemenuntuk BedfordPetahanaMulai menjabat 8 Juni 2017 PendahuluRichard FullerPenggantiPetahanaMayoritas145 (0.3%) Informasi pribadiLahir15 Oktober 1971 (umur 52)Mirpur, PakistanPartai politikBuruhAnak4Sunting kotak info • L • B Mohammad Yasin MP (lahir 15 Oktober 1971) adalah seorang politikus Partai Buruh Britania Raya kelahiran Pakistan. Ia terpilih dalam pemilu 2017 sebagai anggota parlemen untuk Bedford. Sebelumnya, ia menjadi konselor lokal...

 

11th-century Andalusian agronomist Ibn BassalBorn1050 C.ENationalityAndalusianKnown forBotany, agronomy, horticulture and arboriculture. Ibn Bassal (Arabic: ابن بصال)[1] was an 11th-century Andalusian Arab[2] botanist and agronomist in Toledo and Seville, Spain who wrote about horticulture and arboriculture. He is best known for his book on agronomy, the Dīwān al-filāha (An Anthology of Husbandry). Life and work Arboriculture in a medieval Islamic manuscript Ibn...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

قرن: قرن 13 - قرن 14 - قرن 15 عقد: 1320  1330  1340  1350  1360  1370  1380  سنة: 1352 1353 1354 - 1355 - 1356 1357 1358 1355 هـ هي سنة في التقويم الهجري امتدت مقابلةً في التقويم الميلادي بين سنتي 1936 و1937.[1][2] [3] جهيمان العتيبي أحداث أنشأ الصحفي والأديب السعودي عبد القدوس الأنصاري مجلة ال...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Godmother film – news · newspapers · books · scholar · JSTOR (November 2016) (Learn how and when to remove this message) 1999 Indian filmGodmotherDirected byVinay ShuklaWritten byVinay ShuklaProduced byRajat SenguptaStarringShabana AzmiMilind GunajiNirmal ...

 

LATV affiliate in Washington, D.C. WMDO-CDCurrently silentWashington, D.C.United StatesChannelsDigital: 14 (UHF), shared with WWTD-LD[1]Virtual: 47ProgrammingAffiliations47.1: LATV[2]OwnershipOwnerEntravision Communications(Entravision Holdings, LLC)Sister stationsWJALHistoryFirst air date1976 (48 years ago) (1976)[3]Former call signsW14AA (1976–1989)W48AW (1989–1995)WMDO-LP (1995–2001)WMDO-CA (2001–2015)Former channel number(s)Analog: 14 (UHF, 19...

 

Atsuto Uchida内田篤人 Informasi pribadiNama lengkap Atsuto Uchida[1]Tanggal lahir 27 Maret 1988 (umur 36)Tempat lahir Kannami, Shizuoka, JepangTinggi 1,76 m (5 ft 9+1⁄2 in)[2]Posisi bermain Bek KananInformasi klubKlub saat ini Kashima AntlersNomor 2Karier junior2003–2005 Shimizu Higashi High SchoolKarier senior*Tahun Tim Tampil (Gol)2006–2010 Kashima Antlers 124 (3)2010–2017 Schalke 04 104 (1)2017–2018 Union Berlin 2 (0)2018- Kashima Antl...

Wonderful Christmastimesingolo discograficoArtistaPaul McCartney Pubblicazione16 novembre 1979 Durata3:48 GenereMusica nataliziaRockElettropop EtichettaColumbia ProduttorePaul McCartney Registrazioneluglio 1979 FormatiVinile CertificazioniDischi d'oro Germania[1](vendite: 250 000+) Nuova Zelanda[2](vendite: 15 000+) Dischi di platino Danimarca[3](vendite: 90 000+) Regno Unito (2)[4](vendite: 1 200 ...

 

Vehicle telematics service This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (December 2016) (Learn how and when to remove this message) Nissan CarWings CarWings, renamed NissanConnect in 2015, and also branded as Infiniti InTouch is a vehicle telematics service offered ...

 

Russian wheelchair fencer Ludmila VasilevaPersonal informationBorn (1984-10-18) 18 October 1984 (age 39)Belozersk, Soviet UnionSportCountryRussiaSportWheelchair fencing Medal record Event 1st 2nd 3rd Paralympic Games 0 0 1 World Championships 1 4 2 European Championships 4 1 5 Total 5 5 8 Paralympic Games 2020 Tokyo Foil B Ludmila Vasileva (born 18 October 1984 in Belozersk, Soviet Union) is a Russian wheelchair fencer. She fences in the foil and épée in category B. Ludmila is a four-t...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

هينام     الإحداثيات 48°33′20″N 110°25′23″W / 48.555555555556°N 110.42305555556°W / 48.555555555556; -110.42305555556   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة هيل  خصائص جغرافية  المساحة 0.444835 كيلومتر مربع0.443209 كيلومتر مربع (1 أبريل 2010)  ارتفاع 924 �...

 

العلاقات التشيكية الميانمارية التشيك ميانمار   التشيك   ميانمار تعديل مصدري - تعديل   العلاقات التشيكية الميانمارية هي العلاقات الثنائية التي تجمع بين التشيك وميانمار.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

Questa voce o sezione deve essere rivista e aggiornata appena possibile. Sembra infatti che questa voce contenga informazioni superate e/o obsolete. Se puoi, contribuisci ad aggiornarla. Remington Arms Company, Inc.Logo Stato Stati Uniti Forma societariaPublic company Fondazione1816 Fondata daEliphalet Remington Chiusura2020 Sede principaleMadison Persone chiaveTed Torbek, Presidente/CEOStephen P. Jackson Jr., CFO SettoreDifesa ProdottiArmi e munizioni Sito webwww.remington.com/ Modific...

 

This article is about rugby union. For Scotland in the Rugby League World Cup, see Scotland national rugby league team § Rugby League World Cup. Scotland vs Italy at St Etienne, 2007 World Cup Map of nations best results, excluding nations which unsuccessfully participated in qualifying tournaments. Scotland have played in every Rugby World Cup since the inaugural tournament in 1987. Their best finish was fourth in 1991. In their semi-final on October 26, 1991, Scotland lost 6–9 ...