Gosset–Elte figures

The 421 polytope of 8-space

In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.

The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches. The vertex figure of ki,j is (k − 1)i,j, and each of its facets are represented by subtracting one from one of the nonzero subscripts, i.e. ki − 1,j and ki,j − 1.[1]

Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.

History

Coxeter named these figures as ki,j (or kij) in shorthand and gave credit of their discovery to Gosset and Elte:[2]

  • Thorold Gosset first published a list of regular and semi-regular figures in space of n dimensions[3] in 1900, enumerating polytopes with one or more types of regular polytope faces. This included the rectified 5-cell 021 in 4-space, demipenteract 121 in 5-space, 221 in 6-space, 321 in 7-space, 421 in 8-space, and 521 infinite tessellation in 8-space.
  • E. L. Elte independently enumerated a different semiregular list in his 1912 book, The Semiregular Polytopes of the Hyperspaces.[4] He called them semiregular polytopes of the first kind, limiting his search to one or two types of regular or semiregular k-faces.

Elte's enumeration included all the kij polytopes except for the 142 which has 3 types of 6-faces.

The set of figures extend into honeycombs of (2,2,2), (3,3,1), and (5,4,1) families in 6,7,8 dimensional Euclidean spaces respectively. Gosset's list included the 521 honeycomb as the only semiregular one in his definition.

Definition

Simply-laced ADE groups

The polytopes and honeycombs in this family can be seen within ADE classification.

A finite polytope kij exists if

or equal for Euclidean honeycombs, and less for hyperbolic honeycombs.

The Coxeter group [3i,j,k] can generate up to 3 unique uniform Gosset–Elte figures with Coxeter–Dynkin diagrams with one end node ringed. By Coxeter's notation, each figure is represented by kij to mean the end-node on the k-length sequence is ringed.

The simplex family can be seen as a limiting case with k=0, and all rectified (single-ring) Coxeter–Dynkin diagrams.

A-family [3n] (rectified simplices)

The family of n-simplices contain Gosset–Elte figures of the form 0ij as all rectified forms of the n-simplex (i + j = n − 1).

They are listed below, along with their Coxeter–Dynkin diagram, with each dimensional family drawn as a graphic orthogonal projection in the plane of the Petrie polygon of the regular simplex.

Coxeter group Simplex Rectified Birectified Trirectified Quadrirectified
A1
[30]
= 000

A2
[31]
= 010
A3
[32]
= 020
= 011
A4
[33]
= 030
= 021
A5
[34]
= 040
= 031
= 022
A6
[35]
= 050
= 041
= 032
A7
[36]
= 060
= 051
= 042
= 033
A8
[37]
= 070
= 061
= 052
= 043
A9
[38]
= 080
= 071
= 062
= 053
= 044
A10
[39]
= 090
= 081
= 072
= 063
= 054
... ...

D-family [3n−3,1,1] demihypercube

Each Dn group has two Gosset–Elte figures, the n-demihypercube as 1k1, and an alternated form of the n-orthoplex, k11, constructed with alternating simplex facets. Rectified n-demihypercubes, a lower symmetry form of a birectified n-cube, can also be represented as 0k11.

Class Demihypercubes Orthoplexes
(Regular)
Rectified demicubes
D3
[31,1,0]
= 110
  = 0110
D4
[31,1,1]
= 111
  = 0111
D5
[32,1,1]
= 121
= 211
= 0211
D6
[33,1,1]
= 131
= 311
= 0311
D7
[34,1,1]
= 141
= 411
= 0411
D8
[35,1,1]
= 151
= 511
= 0511
D9
[36,1,1]
= 161
= 611
= 0611
D10
[37,1,1]
= 171
= 711
= 0711
... ... ...
Dn
[3n−3,1,1]
... = 1n−3,1 ... = (n−3)11 ... = 0n−3,1,1

En family [3n−4,2,1]

Each En group from 4 to 8 has two or three Gosset–Elte figures, represented by one of the end-nodes ringed:k21, 1k2, 2k1. A rectified 1k2 series can also be represented as 0k21.

2k1 1k2 k21 0k21
E4
[30,2,1]
= 201
= 120
= 021
E5
[31,2,1]
= 211
= 121
= 121
= 0211
E6
[32,2,1]
= 221
= 122
= 221
= 0221
E7
[33,2,1]
= 231
= 132
= 321
= 0321
E8
[34,2,1]
= 241
= 142
= 421
= 0421

Euclidean and hyperbolic honeycombs

There are three Euclidean (affine) Coxeter groups in dimensions 6, 7, and 8:[5]

Coxeter group Honeycombs
= [32,2,2] = 222     = 0222
= [33,3,1] = 331 = 133   = 0331
= [35,2,1] = 251 = 152 = 521 = 0521

There are three hyperbolic (paracompact) Coxeter groups in dimensions 7, 8, and 9:

Coxeter group Honeycombs
= [33,2,2] = 322 = 232   = 0322
= [34,3,1] = 431 = 341 = 143 = 0431
= [36,2,1] = 261 = 162 = 621 = 0621

As a generalization more order-3 branches can also be expressed in this symbol. The 4-dimensional affine Coxeter group, , [31,1,1,1], has four order-3 branches, and can express one honeycomb, 1111, , represents a lower symmetry form of the 16-cell honeycomb, and 01111, for the rectified 16-cell honeycomb. The 5-dimensional hyperbolic Coxeter group, , [31,1,1,1,1], has five order-3 branches, and can express one honeycomb, 11111, and its rectification as 011111, .

Notes

  1. ^ Coxeter 1973, p.201
  2. ^ Coxeter, 1973, p. 210 (11.x Historical remarks)
  3. ^ Gosset, 1900
  4. ^ E.L.Elte, 1912
  5. ^ Coxeter 1973, pp.202-204, 11.8 Gosset's figures in six, seven, and eight dimensions.

References

  • Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics. 29: 43–48.
  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen, ISBN 1-4181-7968-X [1] [2]
  • Coxeter, H.S.M. (3rd edition, 1973) Regular Polytopes, Dover edition, ISBN 0-486-61480-8
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

Read other articles:

AtomThe feed icon used in several browsersEkstensi berkas.atom, .xmlJenis MIMEapplication/atom+xmlJenis formatweb syndicationPengembangan dariXML Nama Atom merujuk pada dua standar yang terkait. Atom Syndication Format adalah suatu bahasa XML yang dipergunakan untuk umpan web, sementara Atom Publishing Protocol (AtomPub or APP) adalah HTTP sederhana yang mendasari protokol untuk pembuatan dan pembaharuan sumber daya web. Pengumpan Web mengizinkan program perangkat lunak un...

 

Letak Galveston di Texas Galveston merupakan sebuah kota di Amerika Serikat. Kota ini letaknya di bagian selatan. Tepatnya di negara bagian Texas. Pada tahun 2005, kota ini memiliki jumlah penduduk 57.466 jiwa dan memiliki luas wilayah 539,6 km². Kota ini memiliki angka kepadatan penduduk 1.240,3 jiwa/km². Pranala luar Wikimedia Commons memiliki media mengenai Galveston, Texas. City of Galveston government site Diarsipkan 1999-11-09 di Wayback Machine. Galveston Island Convention and V...

 

HaiderPoster rilis teatrikalSutradaraVishal BhardwajProduserVishal BhardwajSiddharth Roy KapoorDitulis olehBasharat PeerVishal BhardwajBerdasarkanHamletoleh William ShakespearePemeranShahid KapoorTabuShraddha KapoorKay Kay MenonPenata musikVishal BhardwajSinematograferPankaj KumarPenyuntingAarif SheikhPerusahaanproduksiVB PicturesDistributorUTV Motion PicturesTanggal rilis 02 Oktober 2014 (2014-10-02) Durasi162 menitNegaraIndiaBahasaHindiUrduAnggaran₹240 juta (US$3,4 juta)&#...

1842 1848 Élections législatives françaises de 1846 458 députés 1er août 1846 Type d’élection Élections législatives Corps électoral et résultats Votants 246 000 Doctrinaires – François Guizot Parti de la Résistance DoctrinairesCentre ministérielTiers parti Voix 155 718 63,32 %   5,4 Députés élus 290  24 Libéraux – Adolphe Thiers Parti du Mouvement Opposition dynastiqueCentre gaucheRépublicains Voix 90 282...

 

Hard stick-shaped boiled sugar confectionery This article is about traditional British seaside cylindrical boiled sweets. For crystalised sugar candy, see Rock candy. For other uses, see Rock (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rock confectionery – news · newspapers · books · sch...

 

British politician (1908–1998) The Right HonourableThe Lord Boyd-CarpenterPC DLPhotograph from 1927Chief Secretary to the TreasuryIn office16 July 1962 – 15 October 1964MonarchElizabeth IIPrime MinisterHarold Macmillan Alec Douglas-HomeChancellorReginald MaudlingPreceded byHenry BrookeSucceeded byJohn Diamond Ministerial offices 1951-64 Paymaster GeneralIn office16 July 1962 – 15 October 1964Prime MinisterHarold Macmillan Alec Douglas-HomePreceded byHenry BrookeSucceed...

العلاقات اليمنية المالية اليمن مالي   اليمن   مالي تعديل مصدري - تعديل   العلاقات اليمنية المالية هي العلاقات الثنائية التي تجمع بين اليمن ومالي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة اليمن مالي المساح�...

 

Perundingan LinggarjatiPeserta Perundingan saat sedang makan, dari kiri ke kanan: Soekarno, Wim Schermerhorn, Lord Killearn, dan Mohammad HattaJenisPolitikKonteksRevolusi Nasional IndonesiaDirancang15 November 1946Ditandatangani25 Maret 1947LokasiLinggarjati, Kuningan, Jawa BaratPenengah Britania RayaPihak Indonesia Belanda/NICA Perjanjian Linggarjati di Wikisource Perundingan Linggarjati atau Perundingan Kuningan[1] adalah suatu perundingan antara Indonesia dan Belanda di Linggarjati...

 

Italian prelate and Vatican diplomat (born 1934) His EminenceTarcisio BertoneSDBCardinal Secretary of State EmeritusBertone in Slovenia (2010)Appointed15 September 2006Term ended15 October 2013PredecessorAngelo SodanoSuccessorPietro ParolinOther post(s)Cardinal-Bishop of Frascati (2008–present)OrdersOrdination1 July 1960by Albino MensaConsecration1 August 1991by Albino MensaCreated cardinal21 October 2003by John Paul IIRankCardinal-BishopPersonal detailsBornTarcisio Pietro Evasio ...

2001–02 comic book series by Frank Miller The Dark Knight Strikes AgainCover of the trade paperback Batman: The Dark Knight Strikes Again. Cover design by Chip Kidd.Publication informationPublisherDC ComicsScheduleMonthlyFormatLimited seriesPublication dateDecember 2001 – February 2002No. of issues3Main character(s)BatmanSupermanCatgirlLex LuthorBrainiacDick GraysonCreative teamCreated byFrank MillerLynn VarleyTodd KleinBob KaneBill FingerWritten byFrank MillerArtist(s)Frank MillerColoris...

 

Nederlands landskampioenschap 1923-1924 Competizione Nederlands landskampioenschap Sport Calcio Edizione 36ª Organizzatore KNVB Luogo  Paesi Bassi Partecipanti 51 Cronologia della competizione 1922-23 1924-25 Manuale Il campionato era formato da cinquantuno squadre e il Feyenoord vinse il titolo. Indice 1 Est 2 Nord 3 Sud 4 Ovest-I 5 Ovest-II 6 Gruppo finale per il titolo 7 Collegamenti esterni Est Club G V N P GF GS Punti DR 1 SC Enschede 18 12 4 2 48 23 28 +25 Qualificata per il grup...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

50th Guards Rifle DivisionActive1942–1957Country Soviet UnionBranch Red Army (1942-1946) Soviet Army (1946-1957)TypeDivisionRoleInfantryEngagementsOperation UranusOperation Little SaturnOperation GallopDonbas strategic offensive (August 1943)Nikopol–Krivoi Rog OffensiveOperation BagrationBobruysk OffensiveBaranovichi-Slonim OffensiveLublin–Brest OffensiveGoldap-Gumbinnen OperationVistula-Oder OffensiveEast Prussian OffensiveHeiligenbeil PocketBattle of BerlinPrague OffensiveDe...

 

Ця стаття висвітлює поточні бойові дії. Поки події розвиваються, інформація може швидко змінюватися і лишатися непідтвердженою. Бої на півночі Харківської області (2024) Російське вторгнення в Україну (з 2022) Дата: 10 травня 2024 — т. ч. Місце: Харківська область Результат: Б�...

 

Kokpit berisi panel instrumen. Kokpit atau Flight Deck adalah sebuah ruangan khusus yang biasanya terdapat di bagian depan pesawat yang dari dalamnya pilot bisa mengendalikan pesawat terbang. Kokpit terdiri dari Flight Instrument (Instrumen Penerbangan) dan Flight Control (Kontrol Penerbangan) yang memungkinkan pilot untuk mengendalikan pesawat. Flight Instruments Flight Instrument adalah instrumen-instrumen yang terdapat di dalam kokpit pesawat yang memberikan informasi tentang situasi pener...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) إريك كريستيانسن معلومات شخصية الميلاد 12 مارس 1961 (63 سنة)  مواطنة النرويج  الوزن 192 رطل  الحياة العملية المهنة لاعب هوكي الجليد  الرياضة هوكي الجليد...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Egerton RyersonPotret Ryerson karya Théophile HamelLahirAdolphus Egerton Ryerson(1803-03-24)24 Maret 1803Kotapraja Charlotteville, Norfolk County, Kanada HuluMeninggal19 Februari 1882(1882-02-19) (umur 78)Toronto, OntarioPekerjaanPengajarpendeta...

 

هذه هي قائمة المشاريع العملاقة، أي المشاريع الاستثمارية للغاية وذات النطاق الواسع. وتسمى أيضاً في بعض الأحيان «برامج كُبرى». بعض هذه المشاريع من الضخامة بحيث لا يجوز أبداً أن تكون القائمة كاملة. أصبح المشروع الأكثر تكلفة في تاريخ العالم من حيث تكلفة التضخم النقدي المعدل ه�...

For the mine, see Corumbá (mine). Municipality in Center-West, BrazilCorumbáMunicipalityMunicipality of Corumbá FlagSealLocation in Mato Grosso do SulCoordinates: 19°00′32″S 57°39′10″W / 19.00889°S 57.65278°W / -19.00889; -57.65278Country BrazilRegionCenter-WestState Mato Grosso do SulFounded1778Government • MayorRuiter Cunha (PSDB)Area • Total64,960 km2 (25,080 sq mi)Elevation118 m (387 ft)Popul...

 

Curves of genus > 1 over the rationals have only finitely many rational points Faltings's theoremGerd FaltingsFieldArithmetic geometryConjectured byLouis MordellConjectured in1922First proof byGerd FaltingsFirst proof in1983GeneralizationsBombieri–Lang conjectureMordell–Lang conjectureConsequencesSiegel's theorem on integral points Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field Q {\displaystyle \mathbb {Q} } of r...