Going up and going down

In commutative algebra, a branch of mathematics, going up and going down are terms which refer to certain properties of chains of prime ideals in integral extensions.

The phrase going up refers to the case when a chain can be extended by "upward inclusion", while going down refers to the case when a chain can be extended by "downward inclusion".

The major results are the Cohen–Seidenberg theorems, which were proved by Irvin S. Cohen and Abraham Seidenberg. These are known as the going-up and going-down theorems.

Going up and going down

Let A ⊆ B be an extension of commutative rings.

The going-up and going-down theorems give sufficient conditions for a chain of prime ideals in B, each member of which lies over members of a longer chain of prime ideals in A, to be able to be extended to the length of the chain of prime ideals in A.

Lying over and incomparability

First, we fix some terminology. If and are prime ideals of A and B, respectively, such that

(note that is automatically a prime ideal of A) then we say that lies under and that lies over . In general, a ring extension A ⊆ B of commutative rings is said to satisfy the lying over property if every prime ideal of A lies under some prime ideal of B.

The extension A ⊆ B is said to satisfy the incomparability property if whenever and are distinct primes of B lying over a prime in A, then  ⊈  and  ⊈ .

Going-up

The ring extension A ⊆ B is said to satisfy the going-up property if whenever

is a chain of prime ideals of A and

is a chain of prime ideals of B with m < n and such that lies over for 1 ≤ i ≤ m, then the latter chain can be extended to a chain

such that lies over for each 1 ≤ i ≤ n.

In (Kaplansky 1970) it is shown that if an extension A ⊆ B satisfies the going-up property, then it also satisfies the lying-over property.

Going-down

The ring extension A ⊆ B is said to satisfy the going-down property if whenever

is a chain of prime ideals of A and

is a chain of prime ideals of B with m < n and such that lies over for 1 ≤ i ≤ m, then the latter chain can be extended to a chain

such that lies over for each 1 ≤ i ≤ n.

There is a generalization of the ring extension case with ring morphisms. Let f : A → B be a (unital) ring homomorphism so that B is a ring extension of f(A). Then f is said to satisfy the going-up property if the going-up property holds for f(A) in B.

Similarly, if B is a ring extension of f(A), then f is said to satisfy the going-down property if the going-down property holds for f(A) in B.

In the case of ordinary ring extensions such as A ⊆ B, the inclusion map is the pertinent map.

Going-up and going-down theorems

The usual statements of going-up and going-down theorems refer to a ring extension A ⊆ B:

  1. (Going up) If B is an integral extension of A, then the extension satisfies the going-up property (and hence the lying over property), and the incomparability property.
  2. (Going down) If B is an integral extension of A, and B is a domain, and A is integrally closed in its field of fractions, then the extension (in addition to going-up, lying-over and incomparability) satisfies the going-down property.

There is another sufficient condition for the going-down property:

  • If AB is a flat extension of commutative rings, then the going-down property holds.[1]

Proof:[2] Let p1 ⊆ p2 be prime ideals of A and let q2 be a prime ideal of B such that q2 ∩ A = p2. We wish to prove that there is a prime ideal q1 of B contained in q2 such that q1 ∩ A = p1. Since A ⊆ B is a flat extension of rings, it follows that Ap2 ⊆ Bq2 is a flat extension of rings. In fact, Ap2 ⊆ Bq2 is a faithfully flat extension of rings since the inclusion map Ap2 → Bq2 is a local homomorphism. Therefore, the induced map on spectra Spec(Bq2) → Spec(Ap2) is surjective and there exists a prime ideal of Bq2 that contracts to the prime ideal p1Ap2 of Ap2. The contraction of this prime ideal of Bq2 to B is a prime ideal q1 of B contained in q2 that contracts to p1. The proof is complete. Q.E.D.

References

  1. ^ This follows from a much more general lemma in Bruns-Herzog, Lemma A.9 on page 415.
  2. ^ Matsumura, page 33, (5.D), Theorem 4
  • Atiyah, M. F., and I. G. Macdonald, Introduction to Commutative Algebra, Perseus Books, 1969, ISBN 0-201-00361-9 MR242802
  • Winfried Bruns; Jürgen Herzog, Cohen–Macaulay rings. Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. xii+403 pp. ISBN 0-521-41068-1
  • Cohen, I.S.; Seidenberg, A. (1946). "Prime ideals and integral dependence". Bull. Amer. Math. Soc. 52 (4): 252–261. doi:10.1090/s0002-9904-1946-08552-3. MR 0015379.
  • Kaplansky, Irving (1970). Commutative rings. Allyn and Bacon.
  • Matsumura, Hideyuki (1970). Commutative algebra. W. A. Benjamin. ISBN 978-0-8053-7025-6.
  • Sharp, R. Y. (2000). "13 Integral dependence on subrings (13.38 The going-up theorem, pp. 258–259; 13.41 The going down theorem, pp. 261–262)". Steps in commutative algebra. London Mathematical Society Student Texts. Vol. 51 (Second ed.). Cambridge: Cambridge University Press. pp. xii+355. ISBN 0-521-64623-5. MR 1817605.

Read other articles:

Scott KellyLahirScott Joseph Kelly21 Februari 1964 (umur 60)Orange, New Jersey, ASStatusPurnawirawanKebangsaanAmerika SerikatKarier luar angkasaAntariksawan NASAPangkat Kapten Angkatan Laut Amerika SerikatWaktu di luar angkasa520d[1]SeleksiNASA Astronaut Group 16, 1996Total EVA3Total waktu EVA18 jam dan 20 menitMisiSTS-103, STS-118, Soyuz TMA-01M (Expedition 25/26), Soyuz TMA-16M/Soyuz TMA-18M (Expedition 43/44/45/46)Lambang misi Suami/istriAmiko Kauderer ​(m. ...

 

Questa voce o sezione sull'argomento sport è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. ARTVA ARTVA con schermo LCD L'apparecchio di ric...

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

У этого термина существуют и другие значения, см. Вичка (значения).Вичка Характеристика Длина 30 км Бассейн 124 км² Водоток Исток   (Т) (B)    • Координаты 63°03′28″ с. ш. 34°18′24″ в. д.HGЯO Устье    (Т) (B) Онежское озеро  • Местоположение в М�...

 

Election in Maine Main article: 1984 United States presidential election 1984 United States presidential election in Maine ← 1980 November 6, 1984 1988 →   Nominee Ronald Reagan Walter Mondale Party Republican Democratic Home state California Minnesota Running mate George H. W. Bush Geraldine Ferraro Electoral vote 4 0 Popular vote 336,500 214,515 Percentage 60.83% 38.78% County Results Municipality Results Reagan   40–50%   ...

 

Museum ManchesterManchester MuseumManchester MuseumDidirikan1867LokasiOxford Road, Manchester, EnglandJenisUniversity museum of archaeology, natural history and anthropologyDirekturNick MerrimanSitus web[1] Manchester Museum adalah sebuah museum yang memajang karya-karya arkeologi, antropologi dan sejarah alam, yang dimiliki oleh University of Manchester. Bertempat di Oxford Road (A34) di jantung kelompok bangunan neo-Gothic universitas itu, museum ini menyediakan akses bagi sekitar 4,5 juta ...

Artikel ini membahas jabatan keagamaan. Untuk penggunaan dalam Islam, lihat Imam (Islam). Pastor Gereja Katolik Roma dalam pakaian tradisional jabatannya. Imam adalah orang yang diberikan wewenang untuk menyelenggarakan upacara keagamaan. Jabatan atau kedudukan mereka disebut imamat, istilah yang juga dapat digunakan secara kolektif. Sejak dahulu dan dalam masyarakat-masyarakat yang paling sederhana pun telah hadir pemimpin upacara keagamaan yang disebut imam (lihat shaman dan orakel). Dalam ...

 

Vittorio Porta Nazionalità  Italia Calcio Ruolo Difensore Carriera Squadre di club1 1919-1927 Pro Patria79 (1) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Vittorio Porta (... – ...; fl. XX secolo) è stato un calciatore italiano di ruolo difensore. Indice 1 Carriera 2 Note 2.1 Club 2.1.1 Competizioni nazionali Carriera Ha disputato le ...

 

Socialist movement in North Korea Chollima MovementThe Chollima Statue on Mansu Hill in Pyongyang symbolizes the advance of Korean society at the speed of the mythical Chollima.Korean nameChosŏn'gŭl천리마운동Hancha千里馬運動Revised RomanizationCheollima undongMcCune–ReischauerCh'ŏllima undong The Chollima Movement (Korean: 천리마운동; Hancha: 千里馬運動) was a state-sponsored Stakhanovite movement in North Korea intended to promote rapid economic...

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт�...

 

City in Iowa, United StatesElkhart, IowaCityLocation of Elkhart, IowaCoordinates: 41°47′39″N 93°31′23″W / 41.79417°N 93.52306°W / 41.79417; -93.52306Country United StatesState IowaCountyPolkArea[1] • Total1.78 sq mi (4.62 km2) • Land1.78 sq mi (4.62 km2) • Water0.00 sq mi (0.00 km2)Elevation[2]974 ft (297 m)Population (2020) •...

 

Supiadin AS Anggota Dewan Perwakilan Rakyat Republik IndonesiaMasa jabatan1 Oktober 2014 – 1 Oktober 2019Daerah pemilihanJawa Barat XI Informasi pribadiLahir3 April 1952 (umur 72)Garut, Jawa BaratPartai politikPartai NasdemAlma materAkademi Militer (1975)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1975–2010Pangkat Mayor Jenderal TNINRP27887SatuanInfanteriSunting kotak info • L • B Mayor Jenderal TNI (Purn.) Supiadin Aries Sap...

British tennis player (born 1987) For other people with the same name, see Andrew Murray. This article may be too long to read and navigate comfortably. When this tag was added, its readable prose size was 18,000 words. Consider splitting content into sub-articles, condensing it, or adding subheadings. Please discuss this issue on the article's talk page. (June 2023) SirAndy MurrayOBEMurray lifting the 2010 Rogers Cup trophyFull nameAndrew Barron MurrayCountry (sports) Great Britain...

 

Part of a series onNumeral systems Place-value notation Hindu–Arabic numerals Western Arabic Eastern Arabic Bengali Devanagari Gujarati Gurmukhi Odia Sinhala Tamil Malayalam Telugu Kannada Dzongkha Tibetan Balinese Burmese Javanese Khmer Lao Mongolian Sundanese Thai East Asian systems Contemporary Chinese Suzhou Hokkien Japanese Korean Vietnamese Historic Counting rods Tangut Other systems History Ancient Babylonian Post-classical Cistercian Mayan Muisca Pentadic Quipu Rumi Contemporary Che...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Oliver Ellsworth – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this message) Chief justice of the United States from 1796 to 1800 Justice Ellsworth redirects here. For other uses, see Justice Ellsworth (disambiguation)....

2019 Murcian regional election ← 2015 26 May 2019 2023 → elected members →All 45 seats in the Regional Assembly of Murcia23 seats needed for a majorityOpinion pollsRegistered1,057,978 3.0%Turnout659,437 (62.3%)1.3 pp   First party Second party Third party   Leader Diego Conesa Fernando López Miras Isabel Franco Party PSOE PP Cs Leader since 30 September 2017 3 May 2017 9 March 2019 Last election 13 seats, 23.9% 22 seats, 37.4% 4 seat...

 

American tennis player Melanie OudinOudin at the 2016 US OpenCountry (sports) United StatesResidenceMarietta, GeorgiaBorn (1991-09-23) September 23, 1991 (age 32)Marietta, GeorgiaHeight5 ft 6 in (1.68 m)Turned pro2008RetiredAugust 18, 2017PlaysRight-handed (two-handed backhand)Prize moneyUS$ 1,535,204SinglesCareer record245–202 (54.8%)Career titles1 WTA, 6 ITFHighest rankingNo. 31 (April 19, 2010)Grand Slam singles resultsAustralian Ope...

 

Австрали́йский вариа́нт англи́йского языка́ (англ. Australian English) — один из основных вариантов английского языка, преимущественно используемый в Австралии. Хотя английский язык не имеет официального статуса в Конституции Австралии, австралийский английский де-факто...

1916 epic film IntoleranceTheatrical posterDirected byD. W. GriffithWritten byD. W. GriffithHettie Gray BakerTod BrowningAnita LoosMary H. O'ConnorFrank E. WoodsProduced byD. W. GriffithStarringVera LewisRalph LewisMae MarshRobert HarronConstance TalmadgeLillian GishJosephine CrowellMargery WilsonFrank BennettElmer CliftonMiriam CooperAlfred PagetCinematographyBilly BitzerEdited byD. W. GriffithJames SmithRose SmithMusic byJoseph Carl BreilJulián CarrilloCarl Davis (for 1989 restoration)Dist...

 

Ouaka Cours du Ouaka (en amont du coude de l'Oubangui) Caractéristiques Longueur 611 km Bassin 30 300 km2 Bassin collecteur Congo Débit moyen 195 m3/s (Bambari) Cours Source Sud-ouest de Ouadda · Altitude 684 m · Coordonnées 7° 03′ 32″ N, 21° 35′ 24″ E Confluence Oubangui · Altitude 363 m · Coordonnées 4° 59′ 32″ N, 19° 55′ 52″ E Géographie Pays traversés République centra...