Girsanov theorem

Visualisation of the Girsanov theorem. The left side shows a Wiener process with negative drift under a canonical measure P; on the right side each path of the process is colored according to its likelihood under the martingale measure Q. The density transformation from P to Q is given by the Girsanov theorem.

In probability theory, Girsanov's theorem or the Cameron-Martin-Girsanov theorem explains how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it explains how to convert from the physical measure, which describes the probability that an underlying instrument (such as a share price or interest rate) will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

History

Results of this type were first proved by Cameron-Martin in the 1940s and by Igor Girsanov in 1960. They have been subsequently extended to more general classes of process culminating in the general form of Lenglart (1977).

Significance

Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q is a measure that is absolutely continuous with respect to P then every P-semimartingale is a Q-semimartingale.

Statement of theorem

We state the theorem first for the special case when the underlying stochastic process is a Wiener process. This special case is sufficient for risk-neutral pricing in the Black–Scholes model.

Let be a Wiener process on the Wiener probability space . Let be a measurable process adapted to the natural filtration of the Wiener process ; we assume that the usual conditions have been satisfied.

Given an adapted process define

where is the stochastic exponential of X with respect to W, i.e.

and denotes the quadratic variation of the process X.

If is a martingale then a probability measure Q can be defined on such that Radon–Nikodym derivative

Then for each t the measure Q restricted to the unaugmented sigma fields is equivalent to P restricted to

Furthermore, if is a local martingale under P then the process

is a Q local martingale on the filtered probability space .

Corollary

If X is a continuous process and W is a Brownian motion under measure P then

is a Brownian motion under Q.

The fact that is continuous is trivial; by Girsanov's theorem it is a Q local martingale, and by computing

it follows by Levy's characterization of Brownian motion that this is a Q Brownian motion.

Comments

In many common applications, the process X is defined by

For X of this form then a necessary and sufficient condition for to be a martingale is Novikov's condition which requires that

The stochastic exponential is the process Z which solves the stochastic differential equation

The measure Q constructed above is not equivalent to P on as this would only be the case if the Radon–Nikodym derivative were a uniformly integrable martingale, which the exponential martingale described above is not. On the other hand, as long as Novikov's condition is satisfied the measures are equivalent on .

Additionally, then combining this above observation in this case, we see that the process

for is a Q Brownian motion. This was Igor Girsanov's original formulation of the above theorem.

Application to finance

This theorem can be used to show in the Black–Scholes model the unique risk-neutral measure, i.e. the measure in which the fair value of a derivative is the discounted expected value, Q, is specified by

Application to Langevin equations

Another application of this theorem, also given in the original paper of Igor Girsanov, is for stochastic differential equations. Specifically, let us consider the equation

where denotes a Brownian motion. Here and are fixed deterministic functions. We assume that this equation has a unique strong solution on . In this case Girsanov's theorem may be used to compute functionals of directly in terms a related functional for Brownian motion. More specifically, we have for any bounded functional on continuous functions that

This follows by applying Girsanov's theorem, and the above observation, to the martingale process

In particular, with the notation above, the process

is a Q Brownian motion. Rewriting this in differential form as

we see that the law of under Q solves the equation defining , as is a Q Brownian motion. In particular, we see that the right-hand side may be written as , where Q is the measure taken with respect to the process Y, so the result now is just the statement of Girsanov's theorem.

A more general form of this application is that if both

admit unique strong solutions on , then for any bounded functional on , we have that

See also

References

  • Liptser, Robert S.; Shiriaev, A. N. (2001). Statistics of Random Processes (2nd, rev. and exp. ed.). Springer. ISBN 3-540-63929-2.
  • Dellacherie, C.; Meyer, P.-A. (1982). "Decomposition of Supermartingales, Applications". Probabilities and Potential. Vol. B. Translated by Wilson, J. P. North-Holland. pp. 183–308. ISBN 0-444-86526-8.
  • Lenglart, E. (1977). "Transformation de martingales locales par changement absolue continu de probabilités". Zeitschrift für Wahrscheinlichkeit (in French). 39: 65–70. doi:10.1007/BF01844873.

Read other articles:

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: CyanogenMod – berita · surat kabar · buku · cendekiawan · JSTOR (November 2020) CyanogenModLayar awal default CyanogenMod 13, berdasarkan Android 6.0 MarshmallowPerusahaan / pengembangKomunitas sumber te...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Baca definisi kata Kebunmenurut KBBI. Lihat entri Kebun di kamus bebas Wiktionary. Kebun atau Kebun adalah sekumpulan pohon atau semak yang disengaja yang dipelihara untuk produksi makanan. Kebon juga dapat merujuk ke: Kebon Baru, Tebet, Jakarta Selata...

 

جاسم المضف معلومات شخصية اسم الولادة جاسم عبد الله جاسم محمد المضف الميلاد 1953 (العمر 71 سنة) الكويت الجنسية  الكويت الديانة مسلم الأولاد عبد الله المضف الحياة العملية المدرسة الأم ليسانس حقوق وشريعة - جامعة الكويت المهنة سياسي الحزب مستقل تعديل مصدري - تعديل   جاسم ع�...

The Galileo spacecraft and its attached Inertial Upper Stage (IUS) booster being deployed after being launched by the Space Shuttle Atlantis on the STS-34 mission Inertial Upper Stage (IUS), awalnya dinamakan Interim Upper Stage, adalah roket berbahan bakar padat tahap atas dua tahap yang dikembangkan oleh Boeing untuk Angkatan Udara Amerika Serikat. Dimulai pada tahun 1976 untuk menaikkan muatan dari orbit Bumi rendah ke orbit yang lebih tinggi atau lintasan antar berikut peluncuran kapal Ti...

 

Iwa GartiwaLahir08 Februari 1966 (umur 58)Bandung, Jawa Barat, IndonesiaPekerjaanPengusaha, PolitisiPartai politikNasDemSuami/istriIsyanuari PrihastriantiAnak5Situs webiwa-gartiwa.ahlinyaweb.com Ir. Iwa Gartiwa, M.M. (lahir 08 Februari 1966) adalah seorang pengusaha kelahiran Bandung berkebangsaan Indonesia. Ia menjabat sebagai Ketua Kamar Dagang dan Industri (KADIN) Kota Bandung dua periode 2016–2021 dan 2021–2026, ia juga aktif dan memegang suatu jabatan di berbagai organisasi lai...

 

James Anthony BaileyLahirJames Anthony McGinnis(1847-07-04)4 Juli 1847Detroit, MichiganMeninggal11 April 1906(1906-04-11) (umur 58)Mount Vernon, New YorkSebab meninggalErysipelasDikenal atasCo-founder dari Ringling Bros. Barnum & Bailey Circus [1]Suami/istriRuth Louisa McCaddon ​ ​(m. 1868)​ James Bailey House di Harlem, New York City James Anthony Bailey (4 Juli 1846 - 11 April 1906), dengan nama lahir James Anthony McGinnis, adalah s...

Untuk tempat lain yang bernama sama, lihat Prambanan (disambiguasi). SlemanKecamatanPeta lokasi Kecamatan SlemanNegara IndonesiaProvinsiJawa TengahKabupatenKlatenPemerintahan • Camat-Populasi • Total41,789 jiwaKode Kemendagri33.10.01 Kode BPS3310010 Luas24,43 km²Desa/kelurahan16 Candi Sojiwan Prambanan (Jawa: ꦥꦿꦩ꧀ꦧꦤꦤ꧀) adalah sebuah kecamatan di Kabupaten Klaten, Jawa Tengah. Di sebelah barat kecamatan ini berbatasan dengan Kapanewon Prambanan...

 

Principal intercity bus terminal for Toronto, Ontario, Canada This article is about the bus terminal. For the adjacent train station, see Union Station (Toronto). For the adjacent subway station, see Union station (TTC). Union Station Bus TerminalGeneral informationLocationCIBC Square81 Bay Street, Toronto, OntarioCanadaCoordinates43°38′39″N 79°22′41″W / 43.64417°N 79.37806°W / 43.64417; -79.37806Owned byMetrolinxPlatforms14 bus bays[1]Bus operators...

 

Erosi di Amerika Serikat. Erosi di Israel. Erosi atau pengikisan[1] (dari bahasa Latin erosionem menggerogoti) adalah suatu peristiwa yang terjadi secara alami oleh pengikisan padatan (endapan, tanah, batuan, dan partikel lainnya) akibat transportasi oleh angin, tanah dan material lain di bawah pengaruh gravitasi[2] atau oleh makhluk hidup semisal hewan yang membuat liang atau pertumbuhan akar tanaman yang mengakibatkan retakan tanah yang dalam hal ini disebut bioerosi.[3&...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Radio station in Sault Ste. Marie, Ontario CHAS-FMSault Ste. Marie, OntarioCanadaBroadcast areaAlgoma DistrictChippewa County, MichiganFrequency100.5 MHzBrandingKiSS 100.5ProgrammingFormatHot adult contemporaryOwnershipOwnerRogers Radio(Rogers Media, Inc.)Sister stationsCJQM-FM, CIRS (defunct)HistoryFirst air dateMay 15, 1964Former call signsCJIC-FM (1964–1977)Technical informationClassCERP13,900 wattsHAAT125 meters (410 ft)LinksWebcastListen LiveWebsitekisssoo.com CHAS-FM (100.5 MHz) ...

 

River in Eastern Europe; part of Romania's border with Moldova and Ukraine For the village in Ukraine, see Mahala, Chernivtsi Oblast. PrutPorata, PyretusPrut River near Hoverla, Ivano-Frankivsk OblastMap of the Prut RiverLocationCountryUkraine, Romania, MoldovaOblasts/Counties/DistrictsUkraine: Ivano-Frankivsk O., Chernivtsi O.Romania: Botoșani C., Iași C., Vaslui C., Galați C.Moldova Briceni D., Edineț D., Rîșcani D., Glodeni D., Fălești D., Ungheni D., Nisporeni D., Hîncești D., L...

Hypermedia system for Apple Macintosh and Apple IIGS computers HyperCardOriginal author(s)Bill AtkinsonDeveloper(s)Apple ComputerInitial releaseAugust 11, 1987; 36 years ago (August 11, 1987)[1][2]Final release2.4.1 / 1998; 26 years ago (1998) Written inApple PascalOperating systemMacintosh: System 6, System 7, Mac OS 8, Mac OS 9Apple IIGS: GS/OS 5 and 6PlatformMacintosh, Apple IIGSAvailable inEnglishTypeHypermedia, software developmentLicensePro...

 

Pour les articles homonymes, voir Hue. Hué (vi) Huế Pont Tràng Tiền (ancien pont Clemenceau) construit par la société Schneider et Cie de 1897 à 1900 ; il a été inauguré en 1901. Administration Pays Viêt Nam Statut administratif Chef lieu de province Région Côte centrale du Nord Province Thừa Thiên Huế Démographie Population 652 572 hab. (2022) Densité 7 834 hab./km2 Géographie Coordonnées 16° 28′ 10″ nord, 107° 34′...

 

Pour les articles homonymes, voir AMK. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite aucune source et peut contenir des informations erronées (signalé en juin 2023). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et r�...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

كأس الاتحاد الإنجليزي 1972–73 تفاصيل الموسم كأس الاتحاد الإنجليزي  النسخة 92  البلد المملكة المتحدة  المنظم الاتحاد الإنجليزي لكرة القدم  البطل نادي سندرلاند  كأس الاتحاد الإنجليزي 1971–72  كأس الاتحاد الإنجليزي 1973–74  تعديل مصدري - تعديل   كأس الاتحاد الإن�...

 

British-born French-American restaurateur Philippe in 1970 Claudius Charles Philippe, also known as Philippe of the Waldorf or The Host of the Waldorf, (10 December 1910—24 December 1978[citation needed]) was a British-born French-American restaurateur, catering director, hotelier and businessman, who was the hotel banquet manager of the prestigious Waldorf Astoria New York hotel in the 1940s and 1950s. From 1961 until 1963 he worked as executive vice president of Loews Hotels, and...

Semiconductor manufacturing processes Semiconductordevicefabrication MOSFET scaling(process nodes) 020 μm – 1968 010 μm – 1971 006 μm – 1974 003 μm – 1977  1.5 μm – 1981 001 μm – 1984 800 nm – 1987 600 nm – 1990 350 nm – 1993 250 nm – 1996 180 nm – 1999 130 nm – 2001 090 nm – 2003 065 nm – 2005 045 nm – 2...

 

American tracked amphibious landing vehicle This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Assault Amphibious Vehicle – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this message) AAVP7A1 RAM/RS An Assault Amphibious Vehicle of the U.S. Marines, assigned to the 1s...