^Nique F, Hebbe S, Triballeau N, Peixoto C, Lefrançois JM, Jary H, et al. (October 2012). "Identification of a 4-(hydroxymethyl)diarylhydantoin as a selective androgen receptor modulator". Journal of Medicinal Chemistry. 55 (19): 8236–8247. doi:10.1021/jm300281x. PMID22957947.
^Cozzoli A, Capogrosso RF, Sblendorio VT, Dinardo MM, Jagerschmidt C, Namour F, et al. (June 2013). "GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy". Pharmacological Research. 72: 9–24. doi:10.1016/j.phrs.2013.03.003. hdl:11586/62855. PMID23523664.
^Zierau O, Kolodziejczyk A, Vollmer G, Machalz D, Wolber G, Thieme D, Keiler AM (May 2019). "Comparison of the three SARMs RAD-140, GLPG0492 and GSK-2881078 in two different in vitro bioassays, and in an in silico androgen receptor binding assay". The Journal of Steroid Biochemistry and Molecular Biology. 189: 81–86. doi:10.1016/j.jsbmb.2019.02.014. PMID30825507. S2CID72334106.
^Fonseca GW, Dworatzek E, Ebner N, Von Haehling S (August 2020). "Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials". Expert Opinion on Investigational Drugs. 29 (8): 881–891. doi:10.1080/13543784.2020.1777275. PMID32476495. S2CID219174372.
^Stacchini C, Botrè F, Comunità F, de la Torre X, Dima AP, Ricci M, Mazzarino M (February 2021). "Simultaneous detection of different chemical classes of selective androgen receptor modulators in urine by liquid chromatography-mass spectrometry-based techniques". Journal of Pharmaceutical and Biomedical Analysis. 195: 113849. doi:10.1016/j.jpba.2020.113849. PMID33383501. S2CID229941017.