GC skew

Indication of the origin and terminus of DNA replication on a GC skew and cumulative GC skew plot.
Richness of G over T in the leading strand, resulting in a GC skew sign at the origin and terminus.

GC skew is when the nucleotides guanine and cytosine are over- or under-abundant in a particular region of DNA or RNA. GC skew is also a statistical method for measuring strand-specific guanine overrepresentation.[1]

In equilibrium conditions (without mutational or selective pressure and with nucleotides randomly distributed within the genome) there is an equal frequency of the four DNA bases (adenine, guanine, thymine, and cytosine) on both single strands of a DNA molecule.[2] However, in most bacteria (e.g. E. coli) and some archaea (e.g. Sulfolobus solfataricus), nucleotide compositions are asymmetric between the leading strand and the lagging strand: the leading strand contains more guanine (G) and thymine (T), whereas the lagging strand contains more adenine (A) and cytosine (C).[2] This phenomenon is referred to as GC and AT skew and the corresponding statistics were defined[2] as:

GC skew = (G - C)/(G + C)

AT skew = (A − T)/(A + T)

Asymmetric nucleotide composition

Erwin Chargaff's work in 1950 demonstrated that, in DNA, the bases guanine and cytosine were found in equal abundance, and the bases adenine and thymine were found in equal abundance. However, there was no equality between the amount of one pair versus the other.[3] Chargaff's finding is referred to as Chargaff's rule or parity rule 2.[3] Three years later, Watson and Crick used this fact during their derivation of the structure of DNA, their double helix model.

A natural result of parity rule 1, at the state of equilibrium, in which there is no mutation and/or selection biases in any of the two DNA strands, is that when there is an equal substitution rate, the complementary nucleotides on each strand have equal amounts of a given base and its complement.[4] In other words, in each DNA strand the frequency of the occurrence of T is equal to A and the frequency of the occurrence of G is equal to C because the substitution rate is presumably equal. This phenomenon is referred to as parity rule 2. Hence, the second parity rule only exists when there is no mutation or substitution.

Any deviation from parity rule 2 will result in asymmetric base composition that discriminates the leading strand–i.e., the DNA strand that is replicated in the forward direction–from the lagging strand. This asymmetry is referred to as GC or AT skew.[2]

In some bacterial genomes, there is an enrichment of guanine over cytosine and thymine over adenine on the leading strand and vice versa for the lagging strand. The nucleotide composition skew spectra ranges from −1, which corresponds to G = 0 or A = 0, to +1, which corresponds to T= 0 or C = 0.[2] Therefore, positive GC skew represents richness of G over C and the negative GC skew represents richness of C over G. As a result, one expects to see a positive GC skew and negative AT skew in the leading strand, and a negative GC skew and a positive AT skew in the lagging strand.[5] GC or AT skew changes sign at the boundaries of the two replichores, which correspond to DNA replication origin or terminus.[2][4][5] Originally, this asymmetric nucleotide composition was explained as a different mechanism used in DNA replication between the leading strand and lagging strand. DNA replication is semi-conservative and an asymmetric process itself.[6] This asymmetry is due to the formation of the replication fork and its division into nascent leading and lagging strands. The leading strand is synthesized continuously and in juxtapose to the leading strand; the lagging strand is replicated through short fragments of polynucleotide (Okazaki fragments) in a 5' to 3' direction.[6]

Calculation and GC skew plots

There are three major approaches to calculate and graphically demonstrate GC skew and its properties.

GC asymmetry

The first approach is GC and AT asymmetry.[2] Jean R. Lobry was the first to report, in 1996,[7] the presence of compositional asymmetry in the genomes of three bacteria: E. coli, Bacillus subtilis, and Haemophilus influenzae. The original formulas at the time were not called skew, but rather deviation from [A] = [T] or [C] = [G]:

deviation from [A] = [T] as (A − T)/(A + T);

deviation from [C] = [G] as (C − G)/(C + G);

where A, T, G, and C represent the frequency of occurrence of the equivalent base in a particular sequence in a defined length. A window sliding strategy is used to calculate deviation from C through the genome. In these plots, a positive deviation from C corresponds to lagging strand and negative deviation from C corresponds to leading strand.[8] Furthermore, the site where the deviation sign switches corresponds to the origin or terminal. The x-axis represents the chromosome locations plotted 5′ to 3′ and y-axis represents the deviation value. The major weakness of this method is its window-size dependent property. Therefore, choosing an adequate window size greatly affects the outcome of the plot. Other techniques should be combined with deviation in order to identify and locate the origin of the DNA replication with greater accuracy.

CGC skew

Cumulative CG and AT skew for 49 bacterial chromosomes

The second approach is referred to as cumulative GC skew (CGC skew).[9] This method still uses the sliding window strategy but it takes advantage of the sum of the adjacent windows from an arbitrary start. In this scheme, the entire genome is usually plotted 5' to 3' using an arbitrary start and arbitrary strand. In the cumulative GC skew plot, the peaks corresponds to the switch points (terminus or origin).

In contrast to Lobry's earlier paper, recent implementations of GC skew flips the original definition, redefining it to be:

GC skew = (G − C)/(G + C).

With the flipped definition of GC skew, the maximum value of the cumulative skew corresponds to the terminal, and the minimum value corresponds to the origin of replication.

Z curve

The final approach is the Z curve.[10] Unlike the previous methods, this method do not uses the sliding window strategy and is thought to perform better as to finding the origin of replication.[10] In this method, each base's cumulative frequency with respect to the base at the beginning of the sequence is investigated. The Z curve uses a three-dimensional representation with the following parameters:

Where , represents the excess of purine over pyrimidine, denotes excess of keto over amino, and shows the relationship between the weak and strong hydrogen bonds. and components can alone detect the replication origin and asymmetric composition of the strands. A combination of these methods should be used for prediction of replication origin and terminal, in order to compensate for their weakness.

Mechanism

There is lack of consensus in scientific community with regard to the mechanism underlying the bias in nucleotide composition within each DNA strand. There are two major schools of thought that explain the mechanism behind the strand specific nucleotide composition in bacteria.[4]

The first one describes a bias and an asymmetric mutational pressure on each DNA strand during replication and transcription.[4][11] Due to the asymmetric nature of the replication process, an unequal mutational frequency and DNA repair efficiency during the replication process can introduce more mutations in one strand as compared to the other.[5] Furthermore, the time used for replication between the two strands varies and may lead to asymmetric mutational pressure between leading and lagging strand.[12] In addition to mutations during DNA replication, transcriptional mutations can create strand specific nucleotide composition skew.[5] Deamination of cytosine and ultimately mutation of cytosine to thymine in one DNA strand can increase the relative number of guanine and thymine to cytosine and adenine.[5] In most bacteria, the majority of the genes are encoded in the leading strand.[4] For instance, the leading strand in Bacillus subtilis encodes 75% of the genes.[5] In addition, an excess of deamination and conversion of cytosine to thymine in the coding strand compared to the non-coding strand has been reported.[4][5][13] One possible explanation is that the non-transcribed strand (coding strand) is single-stranded during the transcription process; therefore, it is more vulnerable to deamination compared to the transcribed strand (non-coding strand).[5][14] Another explanation is that the deamination repair activity during transcription does not occur on the coding strand.[5] Only the transcribed strand benefits from these deamination repair events.

The second school of thought describes the mechanism of GC and AT skew as resulting from a difference in selective pressure between the leading and lagging strands.[4][5][14] Examination of the prokaryotic genome shows a preference in third codon position for G over C and T over A.[5] This discrimination creates an asymmetric nucleotide composition, if the coding strand is unequally distributed between the leading and lagging strands, as in the case for bacteria. In addition, the highly transcribed genes, such as ribosomal proteins, have been shown to be located mostly on the leading strand in bacteria.[5] Therefore, a bias in the third-position codon choice of G over C can lead to GC skew. Additionally, some signal sequences are rich in guanine and thymine, such as chi sequences, and these sequences might have a higher frequency of occurrence in one strand compared to the other.[4][5]

Both mutational and selective pressure can independently introduce asymmetry in DNA strands. However, the combination and cumulative effect of both mechanisms is the most plausible explanation for GC and AT skew.[4][14]

Uses

The GC skew is proven to be useful as the indicator of the DNA leading strand, lagging strand, replication origin, and replication terminal.[2][4][5] Most bacteria and archaea contain only one DNA replication origin.[2] The GC skew is positive and negative in the leading strand and in the lagging strand respectively; therefore, it is expected to see a switch in GC skew sign just at the point of DNA replication origin and terminus.[4] GC skew can also be used to study the strand biases and mechanism related to them by calculating the excess of one base over its complementary base in different milieus.[4][5][14] Method such as GC skew, CGC skew, and Z curve are tools that can provide opportunity to better investigate the mechanism of DNA replication in different organisms.

References

  1. ^ Kennedy, Sean P.; Ng, Wailap Victor; Salzberg, Steven L.; Hood, Leroy; DasSarma, Shiladitya (2001-10-01). "Understanding the Adaptation of Halobacterium Species NRC-1 to Its Extreme Environment through Computational Analysis of Its Genome Sequence". Genome Research. 11 (10): 1641–1650. doi:10.1101/gr.190201. ISSN 1088-9051. PMC 311145. PMID 11591641.
  2. ^ a b c d e f g h i Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Molecular biology and evolution 13, 660-665 (1996).
  3. ^ a b Chargaff, E. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6, 201-209 (1950).
  4. ^ a b c d e f g h i j k l Necsulea, A. & Lobry, J. R. A new method for assessing the effect of replication on DNA base composition asymmetry. Molecular biology and evolution 24, 2169-2179, doi:10.1093/molbev/msm148 (2007).
  5. ^ a b c d e f g h i j k l m n o Tillier, E. R. & Collins, R. A. The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. Journal of molecular evolution 50, 249-257 (2000).
  6. ^ a b Rocha, E. P. The replication-related organization of bacterial genomes. Microbiology 150, 1609-1627, doi:10.1099/mic.0.26974-0 (2004).
  7. ^ Lobry, J. R. (May 1996). "Asymmetric substitution patterns in the two DNA strands of bacteria". Molecular Biology and Evolution. 13 (5): 660–665. doi:10.1093/oxfordjournals.molbev.a025626. ISSN 0737-4038. PMID 8676740.
  8. ^ "Explanation of Lobry 1996 article"
  9. ^ Grigoriev, A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Research 26, 2286-2290 (1998).
  10. ^ a b Zhang, R. & Zhang, C. T. Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochemical and biophysical research communications 302, 728-734 (2003).
  11. ^ Lobry, J. R. & Sueoka, N. Asymmetric directional mutation pressures in bacteria. Genome biology 3, RESEARCH0058 (2002).
  12. ^ Eppinger, M., Baar, C., Raddatz, G., Huson, D. H. & Schuster, S. C. Comparative analysis of four Campylobacterales. Nature Reviews. Microbiology 2, 872-885, doi:10.1038/nrmicro1024 (2004).
  13. ^ Marin, A. & Xia, X. GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias. Journal of theoretical biology 253, 508-513, doi:10.1016/j.jtbi.2008.04.004 (2008).
  14. ^ a b c d Charneski C.A., Honti F., Bryant J.M., Hurst L.D., Feil E.J. Atypical AT Skew in Firmicute Genomes Results from Selection and Not from Mutation. PLoS Genetics 7(9):e1002283 (2011).
  • Mewes, H. W. et al. MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res 34, D169-172, doi:10.1093/nar/gkj148 (2006).

Read other articles:

Agoes Haryadi Informasi pribadiLahir0 Januari 1961 (umur 63)IndonesiaAlma materAkademi Angkatan Udara (1984)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1984 - 2019Pangkat Marsekal Pertama TNISatuanKorps PenerbangSunting kotak info • L • B Marsekal Pertama TNI (Purn.) Agoes Haryadi (lahir Januari 1961) adalah seorang Purnawirawan perwira tinggi TNI-AU yang terakhir menjabat sebagai Staf Khusus Kasau. Agoes merupakan lulusan Akademi Angkata...

 

Indonesian Islamic preacher, singer, and actor (1973–2013) Jefri Al-BuchoriBorn(1973-04-12)12 April 1973Jakarta, IndonesiaDied26 April 2013(2013-04-26) (aged 40)Jakarta, IndonesiaNationalityIndonesianOther namesUje, Ustadz UjeOccupation(s)Islamic preacher, da'i, Islamic musician, actor, dancerSpousePipik Dian IrawatiChildrenAdiba Khanza Az-Zahra Abidzar Al Ghifari Ayla AzuhroAttaya Bilal RizkillahParent(s)H. Ismail Modal Dra. Hj. Tatu Mulyana Jefri Al Buchori (12 April 1...

 

Cet article concerne le prototype de voiture sans conducteur de Google. Pour les véhicules utilisés par Google pour prendre des photographies sur la voie publique, voir Google Street View. Véhicule électrique autonome conçu par Google. Toyota Prius à conduite automatique de Google. Le capteur lidar rotatif est visible sur le toit. La voiture sans conducteur de Google, souvent appelée Google Car (en français : voiture Google), est un démonstrateur de voiture autonome en dév...

Cet article est une ébauche concernant la mer, un bateau ou un navire et le Ghana. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Marine du Ghana(en) Ghana Navy Situation Création 1959 Type Marine de guerreDéfense côtière Siège Accra Ghana Organisation Membres environ 2.000 personnes Organisations affiliées Forces armées du Ghana modifier  La Marine du Ghana est la marine de guerre branche navale m...

 

Untuk orang lain dengan nama yang sama, lihat Lee Jung-jin (disambiguasi). Ini adalah nama Korea; marganya adalah Lee. Lee Jung-jinLahir25 Mei 1978 (umur 45)[1]Seoul, Korea SelatanPendidikanUniversitas Hanyang - Teater dan FilmPekerjaanAktorAgenJYP EntertainmentEnter StationNama KoreaHangul이정진 Hanja李廷鎭 Alih AksaraI Jeong-jinMcCune–ReischauerRi Chŏngjin Lee Jung-jin, (lahir 25 Mei 1978) adalah seorang pemeran asal Korea Selatan. Kehidupan awal Lee Jung-jin lulus dar...

 

For the China Railways DF21 narrow gauge locomotive, see List of locomotives in China § Diesel-electric transmission. MRBM/IRBM DF-21/CSS-5 Mod 1 DF-21 and transporter erector launcher vehicle at the Beijing Military Museum.TypeMRBM/IRBMPlace of originChinaService historyIn service1991Used byPeople's Liberation Army Rocket Force Royal Saudi Strategic Missile ForceSpecificationsMass14,700 kilograms (32,400 lb)Length10.7 metres (35 ft)Diameter1.4 metres (4.6&...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

83 Leonis BbJenis objekPlanet luar surya Nama lainHD 99492b, TIC 363549734bData pengamatan(Epos J2000.0[*]) Rasi bintangLeo Asensio rekta171,69282695696500 derajat Deklinasi3,00632140609722 derajat Metode penemuanspektroskopi Doppler[*]Tahun penemuan25 Januari 2005[sunting di Wikidata] 83 Leonis Bb adalah sebuah planet luar surya yang terletak sekitar 59,4 tahun cahaya dari Bumi. Planet ini ditemukan pada tahun 2004 dengan menggunakan metode kecepatan radial. 83 Leonis Bb memili...

 

Marvel Rising è un media franchise statunitense prodotto da Marvel Animation basato su personaggi della Marvel Comics. Il franchising si concentra sui Secret Warriors, una squadra eterogenea di supereroi adolescenti che devono unirsi per difendere il mondo da potenti minacce.[1] Indice 1 Storia 2 Animazione 2.1 Initation 2.2 Secret Warriors 2.3 Inseguendo fantasmi 2.4 Ultimate Comics 2.5 Cuore di ferro 2.6 Battaglia delle Band 2.7 Operazione Shuri 2.8 Giocare con il fuoco 3 Cast 4 Al...

Canadian politician For other people named Hugh O'Neil, see Hugh O'Neil (disambiguation). Hugh O'NeilO'Neil circa 1980Ontario MPPIn office1975–1995Preceded byRichard PotterSucceeded byDoug RollinsConstituencyQuinte Personal detailsBornHugh Patrick O'Neil(1936-07-10)July 10, 1936Belleville, OntarioDiedSeptember 14, 2015(2015-09-14) (aged 79)Trenton, OntarioPolitical partyLiberalSpouseDonna McCollChildren2 Hugh Patrick O'Neil (July 10, 1936 – September 14, 2015) was a politician in Ont...

 

Gnu Jasmin Sibel auf der Gamescom (2023) Jasmin Sibel auf der Gamescom (2023) Allgemeine Informationen Sprache Deutsch Genre Let’s Play, Vlog, Fitness Netzwerk newbase YouTube Kanäle GnuVerspieltes GnuJasmin GnuGNUtube Shorts Gründung 31. März 2015 (Gnu)29. Januar 2019 (Verspieltes Gnu)2. Juni 2019 (Jasmin Gnu)12. Januar 2022 (GNUtube Shorts) Abonnenten über 1.390.000 (Gnu)über 530.000 (Verspieltes Gnu)über 470.000 (Jasmin Gnu)über 37.000 (GNUtube Shorts) Aufrufe über 405.321.652 (...

 

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

Peta menunjukan lokasi Piat Data sensus penduduk di Piat Tahun Populasi Persentase 199517.472—200020.5243.52%200722.2111.10% Piat adalah munisipalitas yang terletak di provinsi Cagayan, Filipina. Pada tahun 2007, munisipalitas ini memiliki populasi sebesar 22.211 jiwa atau 3.975 rumah tangga. Pembagian wilayah Piat terbagi menjadi 18 barangay, yaitu: Apayao Aquib Dugayung Gumarueng Macapil Maguilling Minanga Poblacion I Santa Barbara Santo Domingo Sicatna Villa Rey (San Gaspar) Warat Baung ...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Tomasz Kupisz Informasi pribadiTanggal lahir 2 Januari 1990 (umur 34)Tempat lahir Radom, PolandiaTinggi 1,80 m (5 ft 11 in)Posisi bermain Gelandang sayapInformasi klubKlub saat ini Brescia CalcioKarier junior2003–2004 Junior Radom2004–2006 KS PiasecznoKarier senior*Tahun Tim Tampil (Gol)2007–2010 Wigan Athletic 0 (0)2010–2013 Jagiellonia Białystok 95 (11)2013– Chievo 1 (0)2015 → A.S. Cittadella 19 (4)2015– → Brescia Calcio 0 (0)Tim nasional‡ Polandia U-...

Pemakaian selendang awal abad ke-19 di Prancis. Syal (serapan dari Belanda: sjaalcode: nl is deprecated , dari Persia: شال, translit. shāl)[1] atau selendang adalah kain pakaian sederhana, dipakai secara longgar di atas bahu, tubuh bagian atas dan lengan, kadang-kadang juga di atas kepala. Biasanya berupa sehelai kain persegi panjang, sering dilipat untuk membuat segitiga tetapi juga bisa memang berbentuk segitiga dari awal. Rujukan  Artikel ini menyertakan teks...

 

SUKU BARE'E TO LAGE (bare'e to lage)Wilayah Suku Bare'e To LageDaerah dengan populasi signifikan 85.000 orang (Kabupaten Poso) BahasaBahasa Bare'e dialek To Lage, dan Indonesia.AgamaIslam, dan LamoaKelompok etnik terkaitSuku Taa, Suku To Wana, Suku Bare'e. To Lage[1] (Bahasa Bare'e: Bare'e To Lage) adalah Suku Bangsa yang tinggal di wilayah pesisir timur yang wilayah tersebut bernama To Lage (ToLage), Lage juga adalah nama Landschap di zaman Hindia Belanda yang terletak di Kabupaten P...

 

Economic index published by The EconomistBig Mac index, November 2022 The Big Mac Index is a price index published since 1986 by The Economist as an informal way of measuring the purchasing power parity (PPP) between two currencies and providing a test of the extent to which market exchange rates result in goods costing the same in different countries. It seeks to make exchange-rate theory a bit more digestible.[1] The index compares the relative price worldwide to purchase the Big Ma...

2-in-1 convertible tablets Lenovo ThinkPad Helix refers to two generations of 2-in-1 convertible tablets that can be used as both a conventional ultrabook and a tablet computer. The first-generation Helix was announced at the 2013 International CES and was released on 21 May 2013. A second-generation Helix came out in 2014. The ThinkPad Helix on display in Hong Kong History First generation This section needs expansion. You can help by adding to it. (July 2019) In March 2013, Lenovo said that...

 

Canadian TV series or program A Very Merry Daughter of the BrideGenreComedy, Drama, RomanceWritten byScott EastlickLeslie HopeDirected byLeslie HopeStarringJoanna GarcíaHelen ShaverLuke PerryTheme music composerZack RyanCountry of originCanadaOriginal languageEnglishProductionProducersMichael FrislevChad OakesCinematographyAdam KaneEditorBridget DurnfordRunning time89 minutesOriginal releaseNetworkLifetime (United States)ReleaseDecember 15, 2008 (2008-12-15) A Very Merry Daug...