Fukuoka 1st district

Fukuoka 1st District
Parliamentary constituency
for the Japanese House of Representatives
Numbered map of Fukuoka Prefecture single-member districts
PrefectureFukuoka
Proportional DistrictKyushu
Electorate455,222
Current constituency
SeatsOne
PartyLDP
RepresentativeTakahiro Inoue

Fukuoka 1st district (福岡[県第]1区, Fukuoka[-ken dai-]ichi-ku) is a single-member constituency of the House of Representatives in the Diet of Japan. The constituency consists of Higashi-ku, Fukuoka and Hakata-ku, Fukuoka.

History

In the past, Ryu Matsumoto of DP was an unrivaled candidate. However, he lost to Takahiro Inoue of LDP in the 2012 Japanese general election following a controversial remark he made while serving as Minister of Reconstruction.[1]
At the time, Yūji Shinkai, also an LDP member, was interested in running in the district. Therefore, LDP decided to nominate Inoue and Shinkai as independent candidates and nominate the winning candidate. Inoue ultimately won the election,[2][3] and has since maintained a stable record of victory.

List of representatives

Election Representative Party Notes
1996 Ryu Matsumoto DPJ (1996)
2000 DPJ
2003
2005
2009
2012 Takahiro Inoue LDP
2014 Independent
2017 LDP
2021

References

  1. ^ "衆院選・福岡1区 民主牙城を崩した井上貴博氏(自・新)「厳しい戦いだった」". ネットアイビーニュース. 2012-12-17. Retrieved 2015-05-24.
  2. ^ "【福岡1区】井上貴博氏が保守分裂を制す". ネットアイビーニュース. 2014-12-15. Archived from the original on 2015-05-24. Retrieved 2015-05-24.
  3. ^ 福岡1区“仁義なき戦い”自民分裂選で井上氏が勝利[permanent dead link] 産経新聞 2014年12月14日


Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)G...

 

Ukrainian businessman and politician In this name that follows Eastern Slavic naming customs, the patronymic is Ivanovych and the family name is Khoroshkovskyi. Valeriy KhoroshkovskyiВалерій ХорошковськийKhoroshkovskyi in 2012First Deputy Prime Minister of UkraineIn office22 February 2012 – 14 December 2012PresidentViktor YanukovychPrime MinisterMykola AzarovPreceded byAndriy KlyuyevSucceeded bySerhiy ArbuzovMinister of Finance of UkraineIn office18 January ...

 

American tennis player This article is about the tennis player. For other uses, see Robert Reynolds (disambiguation). Bobby ReynoldsFull nameRobert Thomas ReynoldsCountry (sports) United StatesResidenceAuburn, AlabamaBorn (1982-07-17) July 17, 1982 (age 41)Cape Cod, MassachusettsHeight6 ft 0 in (1.83 m)Turned pro2003Retired2014PlaysRight-handed (two-handed backhand)Prize money$1,573,292SinglesCareer record28–73Career titles0Highest rank...

Area of the brain below the thalamus HypothalamusLocation of the human hypothalamusLocation of the hypothalamus (cyan) in relation to the pituitary and to the rest of the brainDetailsPart ofBrainIdentifiersLatinhypothalamusMeSHD007031NeuroLex IDbirnlex_734TA98A14.1.08.401 A14.1.08.901TA25714FMA62008Anatomical terms of neuroanatomy[edit on Wikidata] Not to be confused with Subthalamus. The hypothalamus (pl.: hypothalami; from Ancient Greek ὑπό (hupó) 'under', and ...

 

Questa voce o sezione sugli argomenti isole d'Italia e Venezia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Lazzaretto VecchioL'isola del Lazzaretto Vecchio vista dal Lido di Venezia.Geografia fisicaLocalizzazioneLaguna veneta Coordinate45°24′22″N 12°21′34″E / 45.406111°N 12....

 

Japanese manga series Senryu GirlCover of the first Senryu Girl manga volume, featuring Nanako Yukishiro川柳少女(Senryū Shōjo)GenreRomantic comedy[1][2]Slice of life[3] MangaWritten byMasakuni IgarashiPublished byKodanshaImprintShōnen Magazine ComicsMagazineWeekly Shōnen MagazineDemographicShōnenOriginal runOctober 19, 2016 – April 22, 2020Volumes13 (List of volumes) Anime television seriesDirected byMasato JinboProduced byMakoto Furukawa...

Phrase referring to historical incidents For other uses, see Shot heard round the world (disambiguation). Ralph Waldo Emerson, whose 1837 poem Concord Hymn included the phrase. The shot heard round the world is a phrase that refers to the opening shot of the battles of Lexington and Concord on April 19, 1775, which sparked the American Revolutionary War and led to the creation of the United States. It originates from the opening stanza of Ralph Waldo Emerson's 1837 poem Concord Hymn. The phra...

 

American professional wrestler This article is about the professional wrestler, Michael Cole. For the WWE announcer, see Michael Cole (wrestling). For the Australian wrestler who wrestled in WWE as Murphy, see Buddy Matthews. For other people of the same name, see Michael Cole (disambiguation). Mikael JudasMikael Judas in 2009.Birth nameMichael ColeBorn (1974-07-25) July 25, 1974 (age 49)[1]Anderson, South Carolina, U.S.Professional wrestling careerRing name(s)Judais[1] M...

 

—— Permukiman di Uni Emirat Arab —— Trade Centre 1المركز التجاري الأولى Trade Centre 1 (kanan) merupakan sebuah distrik penghunian dan perdagangan di Jalan Sheikh Zayed. Negara Uni Emirat Arab Emirat Dubai Kota Dubai Jumlah daerah 335 Statistik permukiman Luas 0.90 km² Jumlah penduduk 4,358[1] (2000) Kepadatan penduduk 4,842/km² Permukiman sekitarnya Trade Centre 2, Al Jafilia, Al Satwa, Al Wasl Koordinat 25°13′30″N 55°16′50″E&#x...

Voce principale: Regno di Romania. Guerra di indipendenza rumenaparte Guerra russo-turca8 ottobre 1878, truppe rumene tornano a Bucarest dopo la guerraData24 aprile 1877 – 3 marzo 1878 LuogoBalcani EsitoVittoria della coalizione russo-bulgaro-rumenaTrattati di Santo Stefano e di Berlino Modifiche territorialiLa Romania diventa indipendenteLa Dobrugia settentrionale passa dall'Impero ottomano alla RomaniaLa Bessarabia meridionale passa dalla Romania all'Impero russo Schieramenti Impero russ...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

18th century Persian mosque in Yerevan For other uses, see Blue Mosque (disambiguation). Blue MosqueAn aerial view of the mosqueReligionAffiliationIslamRiteTwelver ShiaEcclesiastical or organizational statusMosqueLocationLocation12 Mashtots Avenue, Yerevan, Armenia[1][2]Geographic coordinates40°10′41″N 44°30′20″E / 40.1781°N 44.5056°E / 40.1781; 44.5056ArchitectureStyleIranianCompleted1765–1766SpecificationsDome(s)1Minaret(s)1Minaret heigh...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Overview of the events of 1638 in art Overview of the events of 1638 in art List of years in art (table) … 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 … Art Archaeology Architecture Literature Music Philosophy Science +... This is a list of events that occurred in the year 1638 in art. Events Anthony van Dyck is granted denizenship by Charles I of England and marries Mary, daughter of Lord Ruthven; his assistant Adriaen Hanneman...

 

Species of amphibian Incilius bocourti Male and female in amplexus Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Amphibia Order: Anura Family: Bufonidae Genus: Incilius Species: I. bocourti Binomial name Incilius bocourti(Brocchi, 1877) Synonyms Bufo bocourti Brocchi, 1877 Cranopsis bocourti (Brocchi, 1877) Ollotis bocourti (Brocchi, 1877) Incilius bocourti (formerly Bufo bocourti; commo...

US Marine Corps Medal of Honor recipient John Peter FardyMedal of Honor recipientBorn(1922-08-15)August 15, 1922Chicago, Illinois, USDiedMay 7, 1945(1945-05-07) (aged 22)Okinawa, Japanese EmpirePlace of burialHoly Sepulchre Cemetery,Chicago, IllinoisAllegiance United StatesService/branch United States Marine CorpsYears of service1943–1945Rank CorporalUnitCompany C, 1st Battalion, 1st Marines, 1st Marine DivisionBattles/warsWorld War II*Battle of Cape Gloucester*Battle of Pele...

 

African-American civil rights activist (born 1939) Claudette ColvinColvin in 1952BornClaudette Austin (1939-09-05) September 5, 1939 (age 84)Montgomery, Alabama, U.S.Occupation(s)Civil rights activist, nurse aideYears active1969–2004 (as nurse aide)EraCivil rights movement (1954–1968)Known forArrested at the age of 15 in Montgomery, Alabama, for refusing to give up her seat to a white woman on a segregated bus, nine months before the similar Rosa Parks incident.Children2 Cl...

 

Tribunal Regional do Trabalho da 5ª Região(TRT5) Tribunal Regional do Trabalho da 5.ª Região Organização Criação 1946 (78 anos) País  Brasil Sede Salvador, Bahia Composição 29 desembargadores Designação Nomeação pelo presidente da República Presidente Débora Maria Lima Machado(2021–2023) Vice-presidente Alcino Barbosa de Felizola Soares Site oficial www.trt5.jus.br Jurisdição Tipo Tribunal do Trabalho Jurisdição Territorial Estado da Bahia Muro do Tribuna...

Hawaiian high chief KameʻeiamokuOn the right is KameʻeiamokuDied1802Puʻuki, Lahaina, MauiSpouseKamakaʻeheikuli Kealiʻiokahekili Kahikoloa of Kauaʻi Puhipuhiʻili KauhilanahonuaIssueKepoʻokalaniUlumāheihei Hoapili Hoʻolulu Loe-wahine KekikipaʻaFatherKeawepoepoeMotherKanoena Kameʻeiamoku (died 1802) was a Hawaiian high chief and the Counselor of State to King Kamehameha I. He was called Kamehameha's uncle, but he was really the cousin of Kamehameha's mother, Kekuiapoiwa II. Birth and...

 

Theorem on Hamiltonian graphs A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if G {\displaystyle G} is a 2-vertex-connected graph, then the square of G {\displaystyle G} is Hamiltonian. It is named after Herbert Fleischner, who published its proof in 1974. Definitions and statement An undirected graph G {\display...