Share to: share facebook share twitter share wa share telegram print page

Freiman's theorem

In additive combinatorics, a discipline within mathematics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.

Statement

If is a finite subset of with , then is contained in a generalized arithmetic progression of dimension at most and size at most , where and are constants depending only on .

Examples

For a finite set of integers, it is always true that

with equality precisely when is an arithmetic progression.

More generally, suppose is a subset of a finite proper generalized arithmetic progression of dimension such that for some real . Then , so that

History of Freiman's theorem

This result is due to Gregory Freiman (1964, 1966).[1][2][3] Much interest in it, and applications, stemmed from a new proof by Imre Z. Ruzsa (1992,1994).[4][5] Mei-Chu Chang proved new polynomial estimates for the size of arithmetic progressions arising in the theorem in 2002.[6] The current best bounds were provided by Tom Sanders.[7]

Tools used in the proof

The proof presented here follows the proof in Yufei Zhao's lecture notes.[8]

Plünnecke–Ruzsa inequality

Ruzsa covering lemma

The Ruzsa covering lemma states the following:

Let and be finite subsets of an abelian group with nonempty, and let be a positive real number. Then if , there is a subset of with at most elements such that .

This lemma provides a bound on how many copies of one needs to cover , hence the name. The proof is essentially a greedy algorithm:

Proof: Let be a maximal subset of such that the sets for are all disjoint. Then , and also , so . Furthermore, for any , there is some such that intersects , as otherwise adding to contradicts the maximality of . Thus , so .

Freiman homomorphisms and the Ruzsa modeling lemma

Let be a positive integer, and and be abelian groups. Let and . A map is a Freiman -homomorphism if

whenever for any .

If in addition is a bijection and is a Freiman -homomorphism, then is a Freiman -isomorphism.

If is a Freiman -homomorphism, then is a Freiman -homomorphism for any positive integer such that .

Then the Ruzsa modeling lemma states the following:

Let be a finite set of integers, and let be a positive integer. Let be a positive integer such that . Then there exists a subset of with cardinality at least such that is Freiman -isomorphic to a subset of .

The last statement means there exists some Freiman -homomorphism between the two subsets.

Proof sketch: Choose a prime sufficiently large such that the modulo- reduction map is a Freiman -isomorphism from to its image in . Let be the lifting map that takes each member of to its unique representative in . For nonzero , let be the multiplication by map, which is a Freiman -isomorphism. Let be the image . Choose a suitable subset of with cardinality at least such that the restriction of to is a Freiman -isomorphism onto its image, and let be the preimage of under . Then the restriction of to is a Freiman -isomorphism onto its image . Lastly, there exists some choice of nonzero such that the restriction of the modulo- reduction to is a Freiman -isomorphism onto its image. The result follows after composing this map with the earlier Freiman -isomorphism.

Bohr sets and Bogolyubov's lemma

Though Freiman's theorem applies to sets of integers, the Ruzsa modeling lemma allows one to model sets of integers as subsets of finite cyclic groups. So it is useful to first work in the setting of a finite field, and then generalize results to the integers. The following lemma was proved by Bogolyubov:

Let and let . Then contains a subspace of of dimension at least .

Generalizing this lemma to arbitrary cyclic groups requires an analogous notion to “subspace”: that of the Bohr set. Let be a subset of where is a prime. The Bohr set of dimension and width is

where is the distance from to the nearest integer. The following lemma generalizes Bogolyubov's lemma:

Let and . Then contains a Bohr set of dimension at most and width .

Here the dimension of a Bohr set is analogous to the codimension of a set in . The proof of the lemma involves Fourier-analytic methods. The following proposition relates Bohr sets back to generalized arithmetic progressions, eventually leading to the proof of Freiman's theorem.

Let be a Bohr set in of dimension and width . Then contains a proper generalized arithmetic progression of dimension at most and size at least .

The proof of this proposition uses Minkowski's theorem, a fundamental result in geometry of numbers.

Proof

By the Plünnecke–Ruzsa inequality, . By Bertrand's postulate, there exists a prime such that . By the Ruzsa modeling lemma, there exists a subset of of cardinality at least such that is Freiman 8-isomorphic to a subset .

By the generalization of Bogolyubov's lemma, contains a proper generalized arithmetic progression of dimension at most and size at least . Because and are Freiman 8-isomorphic, and are Freiman 2-isomorphic. Then the image under the 2-isomorphism of the proper generalized arithmetic progression in is a proper generalized arithmetic progression in called .

But , since . Thus

so by the Ruzsa covering lemma for some of cardinality at most . Then is contained in a generalized arithmetic progression of dimension and size at most , completing the proof.

Generalizations

A result due to Ben Green and Imre Ruzsa generalized Freiman's theorem to arbitrary abelian groups. They used an analogous notion to generalized arithmetic progressions, which they called coset progressions. A coset progression of an abelian group is a set for a proper generalized arithmetic progression and a subgroup of . The dimension of this coset progression is defined to be the dimension of , and its size is defined to be the cardinality of the whole set. Green and Ruzsa showed the following:

Let be a finite set in an abelian group such that . Then is contained in a coset progression of dimension at most and size at most , where and are functions of that are independent of .

Green and Ruzsa provided upper bounds of and for some absolute constant .[9]

Terence Tao (2010) also generalized Freiman's theorem to solvable groups of bounded derived length.[10]

Extending Freiman’s theorem to an arbitrary nonabelian group is still open. Results for , when a set has very small doubling, are referred to as Kneser theorems.[11]

The polynomial Freiman–Ruzsa conjecture,[12] is a generalization published in a paper[13] by Imre Ruzsa but credited by him to Katalin Marton. It states that if a subset of a group (a power of a cyclic group) has doubling constant such that then it is covered by a bounded number of cosets of some subgroup with. In 2012 Toms Sanders gave an almost polynomial bound of the conjecture for abelian groups.[14][15] In 2023 a solution over a field of characteristic 2 has been posted as a preprint by Tim Gowers, Ben Green, Freddie Manners and Terry Tao.[16][17][18]

See also

References

  1. ^ Freiman, G.A. (1964). "Addition of finite sets". Soviet Mathematics. Doklady. 5: 1366–1370. Zbl 0163.29501.
  2. ^ Freiman, G. A. (1966). Foundations of a Structural Theory of Set Addition (in Russian). Kazan: Kazan Gos. Ped. Inst. p. 140. Zbl 0203.35305.
  3. ^ Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer. ISBN 978-0-387-94655-9. Zbl 0859.11003. p. 252.
  4. ^ Ruzsa, I. Z. (August 1992). "Arithmetical progressions and the number of sums". Periodica Mathematica Hungarica. 25 (1): 105–111. doi:10.1007/BF02454387. ISSN 0031-5303.
  5. ^ Ruzsa, Imre Z. (1994). "Generalized arithmetical progressions and sumsets". Acta Mathematica Hungarica. 65 (4): 379–388. doi:10.1007/bf01876039. Zbl 0816.11008.
  6. ^ Chang, Mei-Chu (2002). "A polynomial bound in Freiman's theorem". Duke Mathematical Journal. 113 (3): 399–419. CiteSeerX 10.1.1.207.3090. doi:10.1215/s0012-7094-02-11331-3. MR 1909605.
  7. ^ Sanders, Tom (2013). "The structure theory of set addition revisited". Bulletin of the American Mathematical Society. 50: 93–127. arXiv:1212.0458. doi:10.1090/S0273-0979-2012-01392-7. S2CID 42609470.
  8. ^ Zhao, Yufei. "Graph Theory and Additive Combinatorics" (PDF). Archived from the original (PDF) on 2019-11-23. Retrieved 2019-12-02.
  9. ^ Ruzsa, Imre Z.; Green, Ben (2007). "Freiman's theorem in an arbitrary abelian group". Journal of the London Mathematical Society. 75 (1): 163–175. arXiv:math/0505198. doi:10.1112/jlms/jdl021. S2CID 15115236.
  10. ^ Tao, Terence (2010). "Freiman's theorem for solvable groups". Contributions to Discrete Mathematics. 5 (2): 137–184. doi:10.11575/cdm.v5i2.62020.
  11. ^ Tao, Terence (10 November 2009). "An elementary non-commutative Freiman theorem". Terence Tao's blog.
  12. ^ "(Ben Green) The Polynomial Freiman–Ruzsa conjecture". What's new. 2007-03-11. Retrieved 2023-11-14.
  13. ^ Ruzsa, I. (1999). "An analog of Freiman's theorem in groups" (PDF). Astérisque. 258: 323–326.
  14. ^ Sanders, Tom (2012-10-15). "On the Bogolyubov–Ruzsa lemma". Analysis & PDE. 5 (3): 627–655. arXiv:1011.0107. doi:10.2140/apde.2012.5.627. ISSN 1948-206X.
  15. ^ Brubaker, Ben (2023-12-04). "An Easy-Sounding Problem Yields Numbers Too Big for Our Universe". Quanta Magazine. Retrieved 2023-12-11.
  16. ^ Gowers, W. T.; Green, Ben; Manners, Freddie; Tao, Terence (2023). "On a conjecture of Marton". arXiv:2311.05762 [math.NT].
  17. ^ "On a conjecture of Marton". What's new. 2023-11-13. Retrieved 2023-11-14.
  18. ^ Sloman, Leila (December 6, 2023). "'A-Team' of Math Proves a Critical Link Between Addition and Sets". Quanta Magazine. Retrieved December 16, 2023.

Further reading


This article incorporates material from Freiman's theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

This article is about a settlement in the City Municipality of Ljubljana. For the village in Lower Carniola, see Šentpavel na Dolenjskem. For settlement in the Municipality of Domžale, see Šentpavel pri Domžalah. Place in Lower Carniola, SloveniaŠentpavelŠentpavelŠentpavelLocation in SloveniaCoordinates: 46°0′44.99″N 14°37′0.65″E / 46.0124972°N 14.6168472°E / 46.0124972; 14.6168472Country SloveniaTraditional regionLower CarniolaStatistical regionCentral…

Ini adalah daftar katedral di Rusia. Katedral Moskwa Katolik Katedral Gereja Katolik di Rusia:[1] Katedral Hati Maria Tak Bernoda, Irkutsk Katedral Bunda Allah, Moskow Katedral Transfigurasi, Novosibirsk Katedral Santo Petrus dan Santo Paulus, Saratov Katedral Santo Yakobus, Yuzhno-Sakhalinsk Lihat juga Gereja Katolik Roma Gereja Katolik di Rusia Daftar katedral Referensi ^ Cathedrals Russia. GCatholic.org. Diakses tanggal 2013-05-08.  lbsDaftar katedral di EropaNegaraberdaulat Alba…

دونالد ترامب اثناء انسحاب بلاده عام 2017 أعلن دونالد ترامب عندما كان رئيسًا للولايات المتحدة في 1 يونيو 2017، أن الولايات المتحدة ستتوقف عن المشاركة في اتفاقية باريس لعام 2015 بشأن التخفيف من آثار التغير المناخي، معتبرًا أن من شأن الاتفاقية «تقويض» الاقتصاد الأمريكي،[1][2]…

Air dari tempat ini ialah air asin. Air asin lebih sering berarti air dari laut dan samudra. Air ini juga disebut air laut. Air asin ialah lawan air tawar. Air asin mengandung garam. Kita tidak bisa meminum air asin karena garam dalam air membuat kita dehidrasi - badan kita akan kehilangan lebih banyak air yang diminum, dan nanti bisa sakit. Namun, banyak jenis ikan, hewan, dan tanaman yang berbeda tinggal di air asin. Garam laut dibuat dengan mengeringkan air asin. Air asin digunakan untuk memb…

5271 КайламайяВідкриттяВідкривач Е. Гелін,Ш. Дж. БасМісце відкриття Обсерваторія Сайдинг-СпрінгДата відкриття 25 червня 1979ПозначенняТимчасові позначення (5271) 1979 MH7 1982 BH10 1991 DZКатегорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Епоха 23 травня 20…

Artikel ini bukan mengenai Miranda Lambert. Miranda CosgroveCosgrove pada karpet merah premier film Despicable Me 2 di Event Cinemas, Bondi Junction, Sydney, Australia, pada Juni 2013Informasi latar belakangNama lahirMiranda Taylor CosgroveLahir14 Mei 1993 (umur 30)AsalLos Angeles, California, Amerika SerikatGenreDance-pop, teen pop, pop rock[1]PekerjaanAktris, Penyanyi, Pengisi suaraInstrumenVokal, gitarTahun aktif2001–sekarangLabelColumbia, EpicArtis terkaitDrake Bell, Josh Peck…

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 9 de marzo de 2022. Un PRT en el Aeropuerto de Londres. El sistema de Transporte Rápido Personal, (Personal Rapit Transit en inglés, PRT), también llamado Sistema automatizado de transporte, o Podcar, es un medio de transporte público con pequeños vehículos automáticos que funcionan en una red de medios de guía especialmente construidos. Este nuevo tipo de sistema es un ti…

此條目翻譯品質不佳,原文在ja:檀れい。翻譯者可能不熟悉中文或原文語言,也可能使用了機器翻譯。請協助翻譯本條目或重新編寫,并注意避免翻译腔的问题。明顯拙劣的翻譯請改掛{{d|G13}}提交刪除。此條目需要补充更多来源。 (2014年4月9日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来…

Contoh satu ruas garis Tiga garis — garis merah dan biru memiliki kemiringan yang sama, sementara garis merah dan hijau memiliki persilangan y yang sama. Garis (bahasa Inggris: line), dalam geometri Euklides, adalah sebuah lengkungan lurus. Ketika geometri digunakan untuk memodel dunia nyata, garis digunakan untuk menggambarkan objek lurus dengan lebar dan tinggi yang berbeda. Garis adalah idealisasi dari objek semacam itu dan tidak punya lebar atau tinggi dan panjangnya dianggap tak hingg…

مايكل ليمبيك   معلومات شخصية الميلاد 25 يونيو 1948 (75 سنة)  بروكلين  مواطنة الولايات المتحدة  الزوجة لورنا باترسون  الأب هارفي ليمبيك  [لغات أخرى]‏  الحياة العملية المهنة ممثل،  ومخرج تلفزيوني،  ومخرج أفلام،  وممثل تلفزيوني،  ومخرج  اللغة الأم …

село Дем'янівка Країна  Україна Область Одеська область Район  Подільський район Громада Окнянська селищна громада Код КАТОТТГ UA51120150130083053 Основні дані Засноване 1840 Населення 78 Площа 0,37 км² Густота населення 210,81 осіб/км² Поштовий індекс 67940 Телефонний код +380 4861

Invasión de Bahía de Cochinos Parte de Historia de la Guerra Fría 1. Tanque del ejército cubano comandado por Fidel Castro 2. Tanque y carros de combate del ejército cubano hacia la Costa Sur 3. Soldados del ejército cubano dirigiéndose a Playa Girón 4. Aviones de la Fuerza Aérea estadounidense en camino hacia Bahía de Cochinos, Cuba5. Derribo de un Lockheed T-33 cubano 6. Ofensiva lanzada cerca de Playa Girón 7. Soldados del ejército cubano 8. Barcos de la Fuerza Naval estadounidens…

وزارة النفط (العراق) تفاصيل الوكالة الحكومية البلد العراق  المركز بغداد  الإحداثيات 33°20′27″N 44°26′01″E / 33.340915197206°N 44.433592116998°E / 33.340915197206; 44.433592116998  الإدارة منصب المدير وزير النفط  موقع الويب الموقع الرسمي  تعديل مصدري - تعديل     لمعانٍ أخرى، طال

Standing committee of the House of Representatives of the Philippines Committee on Economic Affairs18th CongressHistoryNew session startedJuly 22, 2019 (2019-07-22)LeadershipChairmanTeodorico Haresco Jr. (Nacionalista) since October 6, 2020 Minority LeaderStella Luz Quimbo (Liberal) since 2019 StructureSeats34 membersPolitical groupsMajority (31)   PDP–Laban (8)   Party-lists (7)   Nacionalista (4)   NUP (4)   NPC (2)   Bileg Ti Ilokano (1) …

French footballer François Bourbotte Bourbotte in 1938Personal informationDate of birth 24 February 1913Place of birth Loison-sous-Lens, FranceDate of death 15 December 1972(1972-12-15) (aged 59)Position(s) Defender, midfielderSenior career*Years Team Apps (Gls)1932–1934 Bully 1934–1939 SC Fives 1939–1940 Excelsior AC Roubaix 1940–1943 SC Fives 1943–1944 Lille-Flandres [fr] 1944–1947 Lille 1947–1949 Armentières International career1937–1942 France 17 (0)Manage…

Израильско-суринамские отношения Израиль Суринам  Медиафайлы на Викискладе Израильско-суринамские отношения — настоящие и исторические международные дипломатические, политические, экономические, военные, культурные и прочие отношения между Государством Израиль…

Class of massive star with a spectral type of A to K Intrinsic variable types in the Hertzsprung–Russell diagram showing the Yellow Hypergiants above (i.e. more luminous than) the Cepheid instability strip A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually luminous stars, with absolute magnitude (MV) around …

Railway station in Shima, Mie Prefecture, Japan Shima-Yokoyama Station志摩横山駅Shima-Yokoyama StationGeneral informationLocationAgo-cho Ugata 1243-4, Shima-shi, Mie-kenJapanCoordinates34°20′04″N 136°49′06″E / 34.3344°N 136.8182°E / 34.3344; 136.8182Operated by Kintetsu RailwayLine(s) Shima LineDistance61.9  km from Ise-NakagawaPlatforms2 side platformsConnections Bus terminal Other informationStation codeM90WebsiteOfficial websiteHistoryOpenedJuly&#…

 CRL Jalur MRT Lintas PulauLaluan MRT Rentas Pulau跨岛地铁线குறுக்கு தீவு மெட்ரோ வரிRute dan warna Jalur Lintas Pulau tidak dikonfirmasi.IkhtisarJenisAngkutan cepatSistemMRT SingapuraStatusDirencanakanStasiun30 (diperkirakan)[1]Penumpang harian600,000 (expected)OperasiDibuka2030PemilikLand Transport AuthorityOperatorAkan diumumkanData teknisPanjang lintas50 km (31 mi)Lebar sepur4 ft 8+1⁄2 in (1.435…

Cinema in Glasgow, Scotland Cineworld Glasgow Renfrew StreetCineworld's Renfrew Street buildingFormer namesUGC Glasgow Renfrew Street (2001–2005)General informationTypeCinemaLocationGlasgow, ScotlandAddress7 Renfrew StreetCoordinates55°51′54″N 4°15′19″W / 55.86489°N 4.25517°W / 55.86489; -4.25517Opened2001 (as UGC) 2005 (as Cineworld)Inaugurated2000OwnerCineworldHeight62 m (203 ft)Technical detailsStructural systemSteel frameOther informationSeatin…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.17.78.254