Forouhi–Bloomer model
Popular optical dispersion relation
Forouhi-Bloomer model. The real (blue solid line) and imaginary (orange dashed line) components of complex refractive index are plotted for model with parameters
E
g
=
{\displaystyle E_{g}=}
1.3 eV,
A
=
{\displaystyle A=}
1.4910 eV,
B
=
{\displaystyle B=}
5.2139 eV,
C
=
{\displaystyle C=}
8.6170 eV
2
{\displaystyle ^{2}}
, and
n
∞ ∞ -->
=
{\displaystyle n_{\infty }=}
1.5256. These parameters approximate amorphous silicon.[ 1]
The Forouhi–Bloomer model is a mathematical formula for the frequency dependence of the complex-valued refractive index . The model can be used to fit the refractive index of amorphous and crystalline semiconductor and dielectric materials at energies near and greater than their optical band gap .[ 2] [ 3] [ 4] [ 5] [ 6] The dispersion relation bears the names of Rahim Forouhi and Iris Bloomer, who created the model and interpreted the physical significance of its parameters.[ 1] [ 7] The model is aphysical due to its incorrect asymptotic behavior and non-Hermitian character. These shortcomings inspired modified versions of the model[ 8] [ 9] [ 10] as well as development of the Tauc–Lorentz model .
The complex refractive index is given by
n
~ ~ -->
(
E
)
=
n
(
E
)
+
i
κ κ -->
(
E
)
{\displaystyle {\tilde {n}}(E)=n(E)+i\kappa (E)}
where
n
{\displaystyle n}
is the real component of the complex refractive index, commonly called the refractive index,
κ κ -->
{\displaystyle \kappa }
is the imaginary component of the complex refractive index, commonly called the extinction coefficient,
E
{\displaystyle E}
is the photon energy (related to the angular frequency by
E
=
ℏ ℏ -->
ω ω -->
{\displaystyle E=\hbar \omega }
).
The real and imaginary components of the refractive index are related to one another through the Kramers-Kronig relations . Forouhi and Bloomer derived a formula for
κ κ -->
(
E
)
{\displaystyle \kappa (E)}
for amorphous materials. The formula and complementary Kramers–Kronig integral are given by[ 1]
κ κ -->
(
E
)
=
A
(
E
− − -->
E
g
)
2
E
2
− − -->
B
E
+
C
{\displaystyle \kappa (E)={\frac {A\left(E-E_{g}\right)^{2}}{E^{2}-BE+C}}}
n
(
E
)
=
n
∞ ∞ -->
+
1
π π -->
P
∫ ∫ -->
− − -->
∞ ∞ -->
∞ ∞ -->
κ κ -->
(
ξ ξ -->
)
− − -->
κ κ -->
∞ ∞ -->
ξ ξ -->
− − -->
E
d
ξ ξ -->
{\displaystyle n(E)=n_{\infty }+{\frac {1}{\pi }}{\mathcal {P}}\int _{-\infty }^{\infty }{\frac {\kappa (\xi )-\kappa _{\infty }}{\xi -E}}d\xi }
where
E
g
{\displaystyle E_{g}}
is the bandgap of the material,
A
{\displaystyle A}
,
B
{\displaystyle B}
,
C
{\displaystyle C}
, and
n
∞ ∞ -->
{\displaystyle n_{\infty }}
are fitting parameters,
P
{\displaystyle {\mathcal {P}}}
denotes the Cauchy principal value ,
κ κ -->
∞ ∞ -->
=
lim
E
→ → -->
∞ ∞ -->
κ κ -->
(
E
)
=
A
{\displaystyle \kappa _{\infty }=\lim _{E\rightarrow \infty }\kappa (E)=A}
.
A
{\displaystyle A}
,
B
{\displaystyle B}
, and
C
{\displaystyle C}
are subject to the constraints
A
>
0
{\displaystyle A>0}
,
B
>
0
{\displaystyle B>0}
,
C
>
0
{\displaystyle C>0}
, and
4
C
− − -->
B
2
>
0
{\displaystyle 4C-B^{2}>0}
. Evaluating the Kramers-Kronig integral,
n
(
E
)
=
n
∞ ∞ -->
+
B
0
E
+
C
0
E
2
− − -->
B
E
+
C
{\displaystyle n(E)=n_{\infty }+{\frac {B_{0}E+C_{0}}{E^{2}-BE+C}}}
where
Q
=
1
2
4
C
− − -->
B
2
{\displaystyle Q={\frac {1}{2}}{\sqrt {4C-B^{2}}}}
,
B
0
=
A
Q
(
− − -->
1
2
B
2
+
E
g
B
− − -->
E
g
2
+
C
)
{\displaystyle B_{0}={\frac {A}{Q}}\left(-{\frac {1}{2}}B^{2}+E_{g}B-E_{g}^{2}+C\right)}
,
C
0
=
A
Q
(
1
2
B
(
E
g
2
+
C
)
− − -->
2
E
g
C
)
{\displaystyle C_{0}={\frac {A}{Q}}\left({\frac {1}{2}}B\left(E_{g}^{2}+C\right)-2E_{g}C\right)}
.
The Forouhi–Bloomer model for crystalline materials is similar to that of amorphous materials. The formulas for
n
(
E
)
{\displaystyle n(E)}
and
κ κ -->
(
E
)
{\displaystyle \kappa (E)}
are given by[ 7]
n
(
E
)
=
n
∞ ∞ -->
+
∑ ∑ -->
j
B
0
,
j
E
+
C
0
,
j
E
2
− − -->
B
j
E
+
C
j
{\displaystyle n(E)=n_{\infty }+\sum _{j}{\frac {B_{0,j}E+C_{0,j}}{E^{2}-B_{j}E+C_{j}}}}
.
κ κ -->
(
E
)
=
(
E
− − -->
E
g
)
2
∑ ∑ -->
j
A
j
E
2
− − -->
B
j
E
+
C
j
{\displaystyle \kappa (E)=\left(E-E_{g}\right)^{2}\sum _{j}{\frac {A_{j}}{E^{2}-B_{j}E+C_{j}}}}
.
where all variables are defined similarly to the amorphous case, but with unique values for each value of the summation index
j
{\displaystyle j}
. Thus, the model for amorphous materials is a special case of the model for crystalline materials when the sum is over a single term only.
References
^ a b c Forouhi, A. Rahim; Bloomer, Iris (1986). "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics" . Physical Review B . 34 (10): 7018– 7026. Bibcode :1986PhRvB..34.7018F . doi :10.1103/PhysRevB.34.7018 . PMID 9939354 . Retrieved 2021-11-07 .
^ Chrysicopoulou, P.; Davazoglou, D.; Trapalis, Chr; Kordas, G. (1998). "Optical properties of very thin (<100 nm) sol–gel TiO2 films" . Thin Solid Films . 323 (1– 2): 188– 193. Bibcode :1998TSF...323..188C . doi :10.1016/S0040-6090(97)01018-3 . Retrieved 2021-11-16 .
^ Liu, Y. C.; Hsieh, J. H.; Tung, S. K. (2006). "Extraction of optical constants of zinc oxide thin films by ellipsometry with various models" . Thin Solid Films . 510 (1– 2): 32– 38. Bibcode :2006TSF...510...32L . doi :10.1016/j.tsf.2005.10.089 . Retrieved 2021-11-16 .
^ Laidani, N.; Bartali, R.; Gottardi, G.; Anderle, M.; Cheyssac, P. (2007). "Optical absorption parameters of amorphous carbon films from Forouhi–Bloomer and Tauc–Lorentz models: a comparative study" . Journal of Physics: Condensed Matter . 20 (1): 015216. doi :10.1088/0953-8984/20/01/015216 . S2CID 7359667 . Retrieved 2021-11-16 .
^ Torkaman, N. M.; Ganjkhanlou, Y.; Kazemzad, M.; Dabaghi, H. H.; Keyanpour-Rad, M. (2010). "Crystallographic parameters and electro-optical constants in ITO thin films" . Materials Characterization . 61 (3): 362– 370. doi :10.1016/j.matchar.2009.12.020 . Retrieved 2021-11-16 .
^ Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015). "Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" . The Journal of Physical Chemistry Letters . 6 (1): 66– 71. doi :10.1021/jz502471h . PMID 26263093 . Retrieved 2021-11-16 .
^ a b Forouhi, A. Rahim; Bloomer, Iris (1988). "Optical properties of crystalline semiconductors and dielectrics" . Physical Review B . 38 (3): 1865– 1874. Bibcode :1988PhRvB..38.1865F . doi :10.1103/PhysRevB.38.1865 . PMID 9946471 . Retrieved 2021-11-07 .
^ McGahan, William A.; Makovicka, Tim; Hale, Jeffrey; Woollam, John A. (1994). "Modified Forouhi and Bloomer dispersion model for the optical constants of amorphous hydrogenated carbon thin films" . Thin Solid Films . 253 (1): 57– 61. Bibcode :1994TSF...253...57M . doi :10.1016/0040-6090(94)90294-1 . Retrieved 2021-11-07 .
^ Liu, Yong; Xu, Gang; Song, Chenlu; Weng, Wenjian; Du, Piyi; Han, Gaorong (2007). "Modification on Forouhi and Bloomer model for the optical properties of amorphous silicon thin films" . Thin Solid Films . 515 (7): 3910– 3913. Bibcode :2007TSF...515.3910L . doi :10.1016/j.tsf.2006.11.003 . Retrieved 2021-11-16 .
^ Forouhi, A. Rahim; Bloomer, Iris (2019). "New dispersion equations for insulators and semiconductors valid throughout radio-waves to extreme ultraviolet spectral range" . Journal of Physics Communications . 3 (3): 035022. Bibcode :2019JPhCo...3c5022F . doi :10.1088/2399-6528/ab0603 . S2CID 150238695 .
See also