Fermionic field

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.

The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors. Spin-1/2 Majorana fermions, such as the hypothetical neutralino, can be described as either a dependent 4-component Majorana spinor or a single 2-component Weyl spinor. It is not known whether the neutrino is a Majorana fermion or a Dirac fermion; observing neutrinoless double-beta decay experimentally would settle this question.

Basic properties

Free (non-interacting) fermionic fields obey canonical anticommutation relations; i.e., involve the anticommutators {a, b} = ab + ba, rather than the commutators [a, b] = abba of bosonic or standard quantum mechanics. Those relations also hold for interacting fermionic fields in the interaction picture, where the fields evolve in time as if free and the effects of the interaction are encoded in the evolution of the states.

It is these anticommutation relations that imply Fermi–Dirac statistics for the field quanta. They also result in the Pauli exclusion principle: two fermionic particles cannot occupy the same state at the same time.

Dirac fields

The prominent example of a spin-1/2 fermion field is the Dirac field (named after Paul Dirac), and denoted by . The equation of motion for a free spin 1/2 particle is the Dirac equation,

where are gamma matrices and is the mass. The simplest possible solutions to this equation are plane wave solutions, and . These plane wave solutions form a basis for the Fourier components of , allowing for the general expansion of the wave function as follows,

u and v are spinors, labelled by spin, s and spinor indices . For the electron, a spin 1/2 particle, s = +1/2 or s = −1/2. The energy factor is the result of having a Lorentz invariant integration measure. In second quantization, is promoted to an operator, so the coefficients of its Fourier modes must be operators too. Hence, and are operators. The properties of these operators can be discerned from the properties of the field. and obey the anticommutation relations:

We impose an anticommutator relation (as opposed to a commutation relation as we do for the bosonic field) in order to make the operators compatible with Fermi–Dirac statistics. By putting in the expansions for and , the anticommutation relations for the coefficients can be computed.

In a manner analogous to non-relativistic annihilation and creation operators and their commutators, these algebras lead to the physical interpretation that creates a fermion of momentum p and spin s, and creates an antifermion of momentum q and spin r. The general field is now seen to be a weighted (by the energy factor) summation over all possible spins and momenta for creating fermions and antifermions. Its conjugate field, , is the opposite, a weighted summation over all possible spins and momenta for annihilating fermions and antifermions.

With the field modes understood and the conjugate field defined, it is possible to construct Lorentz invariant quantities for fermionic fields. The simplest is the quantity . This makes the reason for the choice of clear. This is because the general Lorentz transform on is not unitary so the quantity would not be invariant under such transforms, so the inclusion of is to correct for this. The other possible non-zero Lorentz invariant quantity, up to an overall conjugation, constructible from the fermionic fields is .

Since linear combinations of these quantities are also Lorentz invariant, this leads naturally to the Lagrangian density for the Dirac field by the requirement that the Euler–Lagrange equation of the system recover the Dirac equation.

Such an expression has its indices suppressed. When reintroduced the full expression is

The Hamiltonian (energy) density can also be constructed by first defining the momentum canonically conjugate to , called

With that definition of , the Hamiltonian density is:

where is the standard gradient of the space-like coordinates, and is a vector of the space-like matrices. It is surprising that the Hamiltonian density doesn't depend on the time derivative of , directly, but the expression is correct.

Given the expression for we can construct the Feynman propagator for the fermion field:

we define the time-ordered product for fermions with a minus sign due to their anticommuting nature

Plugging our plane wave expansion for the fermion field into the above equation yields:

where we have employed the Feynman slash notation. This result makes sense since the factor

is just the inverse of the operator acting on in the Dirac equation. Note that the Feynman propagator for the Klein–Gordon field has this same property. Since all reasonable observables (such as energy, charge, particle number, etc.) are built out of an even number of fermion fields, the commutation relation vanishes between any two observables at spacetime points outside the light cone. As we know from elementary quantum mechanics two simultaneously commuting observables can be measured simultaneously. We have therefore correctly implemented Lorentz invariance for the Dirac field, and preserved causality.

More complicated field theories involving interactions (such as Yukawa theory, or quantum electrodynamics) can be analyzed too, by various perturbative and non-perturbative methods.

Dirac fields are an important ingredient of the Standard Model.

See also

References

Read other articles:

سرطان الخلايا الصغيرة معلومات عامة الاختصاص علم الأورام  من أنواع سرطانة،  ومرض  تعديل مصدري - تعديل   سرطان الخلايا الصغيرة (المعروف أيضا باسم «سرطان الخلايا الصغيرة الرئوي»، أو «سرطان خلايا الشوفان») هو أحد أنواع السرطانات الخبيثة بشكل عالي والتي غالبا ما تنشأ...

 

American film and television producer, writer and actor William DozierBorn(1908-02-13)February 13, 1908Omaha, Nebraska, U.S.DiedApril 23, 1991(1991-04-23) (aged 83)Santa Monica, California, U.S.OccupationsProducerwriteractorYears active1944–1982Spouses Katharine Foley ​ ​(m. 1929; div. 1946)​ Joan Fontaine ​ ​(m. 1946; div. 1951)​ Ann Rutherford ​(m. 1953)​ ...

 

City in Massachusetts, United StatesSalemCity Left-right from top: Federal Street District, House of Seven Gables, Custom House, Peabody Essex Museum FlagSealNickname(s): The Witch City, The City of Witches, Pleasure CityMotto: Divitis Indiae usque ad ultimum sinum (Latin: To the farthest port of the rich Indies)Location in Essex County, MassachusettsSalemLocation in the United StatesCoordinates: 42°31′10″N 70°53′50″W / 42.51944°N 70.89722°W / 42...

The Man Who Knew InfinityTheatrical release posterSutradaraMatthew BrownProduserEdward R. PressmanJim YoungJoe ThomasMark MontgomerySkenarioMatthew BrownBerdasarkanThe Man Who Knew Infinityoleh Robert KanigelPemeranDev PatelJeremy IronsDevika BhiseToby JonesStephen FryJeremy NorthamKevin McNallyEnzo CilentiPenata musikCoby BrownSinematograferLarry SmithPenyuntingJC BondPerusahaanproduksiPressman FilmXeitgeist Entertainment GroupCayenne Pepper ProductionsDistributorWarner Bros.(Inggrisbr...

 

95thMassachusetts General Court ←94th 96th→OverviewLegislative bodyGeneral CourtElectionNovember 4, 1873SenateMembers40PresidentGeorge B. LoringParty controlRepublican[1]House of RepresentativesMembers240SpeakerJohn E. SanfordParty controlRepublican[2]Sessions1stJanuary 7, 1874 (1874-01-07) – June 30, 1874 (1874-06-30)[3] George Loring, Senate president.John Eliot Sanford, House speaker.Leaders of the Massachusetts Gene...

 

Krishna JanmashtamiArca Krishna yang sedang tidurNama lainJanmashtami / Dahi HandiDirayakan olehumat HinduJenisReligiusKegiatanPuasa, sembahyangTanggalBhadrapada, AshtamiTahun 2024date missing (please add)Terkait denganKrishna Krishna Janmashtami (Dewanagari: कृष्ण जन्माष्टमी; ,IAST: kṛṣṇa janmāṣṭami,; juga dikenal dengan nama Krishnashtami, Saatam Aatham, Gokulashtami, Ashtami Rohini, Srikrishna Jayanti, Sree Jayanthi atau kadangka...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

Sanskrit text on the performing arts Natya ShastraShiva as the Lord of DanceInformationReligionHinduismAuthorBharataLanguageSanskritPart of a series onHindu scriptures and texts Shruti Smriti List Vedas Rigveda Samaveda Yajurveda Atharvaveda Divisions Samhita Brahmana Aranyaka Upanishads UpanishadsRig vedic Aitareya Kaushitaki Sama vedic Chandogya Kena Yajur vedic Brihadaranyaka Isha Taittiriya Katha Shvetashvatara Maitri Atharva vedic Mundaka Mandukya Prashna Other scriptures Agamas Bhagavad...

 

455 sack of Rome by the Vandals For other uses, see Sack of Rome. This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (February 2021) Sack of RomePart of the fall of the Western Roman EmpireGenseric sacking Rome, by Karl BriullovDate2 – c. 16 June 455 AD[1]LocationRome, ItalyResult Vandalic victoryBelligerents Vandal Kingdom Western Roman Emp...

Untuk kimiawan-penemu dan politikus asal Prancis, lihat Jules-Louis Breton. Jules BretonJules BretonLahirJules Adolphe Aimé Louis Breton(1827-05-01)1 Mei 1827Courrières, PrancisMeninggal5 Juli 1906(1906-07-05) (umur 79)Paris, PrancisKebangsaanPrancisPendidikanÉcole des Beaux-ArtsDikenal atasPaintingGerakan politikRealisme Jules Adolphe Aimé Louis Breton (1 Mei 1827 – 5 Juli 1906) adalah seorang pelukis Realis Prancis abad ke-19. Lukisan-lukisannya sangat dipengaruhi o...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

Daftar julukan kota di New Jersey ini mengandung samaran, julukan, dan slogan yang disematkan kepada beberapa kota di New Jersey (resmi dan tidak resmi) oleh pemerintah kota, masyarakat setempat, orang asing, badan pariwisata, atau kamar dagang. Julukan kota berperan sebagai perintis identitas lokal, membantu orang asing mengenali masyarakat setempat, atau mengajak orang berkunjung karena julukannya khas; mengangkat martabat daerah; dan mempersatukan masyarakat.[1] Julukan dan slogan ...

 

Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze. PolmoniteQuadro radiografico di polmonite nel lobo superiore sinistro (le frecce indicano i confini tra lobo inferiore e superiore)Specialitàpneumologia e infettivologia Eziologiainfezione, polmonite ab ingestis e fumare Classificazione e risorse esterne (EN)ICD-9-CM480, 481, 482, 483, 484, 485, 486 e 770.0 I...

 

Suspension bridge in England Humber BridgeThe Humber Bridge, Lincolnshire/East YorkshireCoordinates53°42′23″N 0°27′01″W / 53.7064°N 0.4502°W / 53.7064; -0.4502Carries4 lanes of motor traffic (A15), pedestrian- cycle-way either sideCrossesHumberLocaleHessle, East Riding of Yorkshire/North LincolnshireMaintained byThe Humber Bridge BoardHeritage statusGrade I listedCharacteristicsDesignSuspensionTotal length2,220 m (7,280 ft; 1.38 mi)Width28.5&...

List of banks in Egypt shows a list format description of the banks currently, or at some recent time, existing within Egypt Banks Registered with the Central Bank of Egypt[1] National Bank of Egypt Banque Misr Banque du Caire The United Bank of Egypt Housing and Development Bank Suez Canal Bank Agricultural Bank of Egypt Egyptian Arab Land Bank Industrial Development Bank of Egypt Export Development Bank of Egypt Commercial International Bank (CIB) Arab African International Bank Ar...

 

2005 studio album by MobyHotelStudio album by MobyReleasedMarch 14, 2005 (2005-03-14)Recorded2004StudioMoby's home studio, Electric Lady Studios, and Loho Studios in New York CityGenreAlternative rockelectronicadowntempotrip hopLength56:30 (disc one)67:51 (disc two)LabelMuteV2ProducerMobyMoby chronology 18 B Sides + DVD(2003) Hotel(2005) Go – The Very Best of Moby(2006) Moby studio albums chronology 18(2002) Hotel(2005) Last Night(2008) Alternate coverHotel: Ambient 2...

 

Dalam nama yang mengikuti kebiasaan penamaan Slavia Timur ini, patronimiknya adalah Dmitriyevich dan nama keluarganya adalah Protasevich. Roman ProtasevichNama asalРоман Протасевич Раман ПратасевічLahirRoman Dmitryevich Protasevich5 Mei 1995 (umur 29)[1]Minsk,[butuh rujukan] BelarusPendidikanUniversitas Negeri BelarusPekerjaanWartawanaktivisfotograferTahun aktif2011–saat iniOrganisasiNextaGerakan politikFront PemudaPasanganSof...

Посёлок Теба, Междуреченский округ, Кемеровская область, Россия. Высота снежного покрова 1 метр 80 см Сне́жный покро́в — слой снега на поверхности Земли, образовавшийся в результате снегопадов и метелей. Различают временный снежный покров, стаивающий за несколько ч�...

 

Italian middle-distance runner Ala ZoghlamiAla Zoghlami at the 2020 Olympics.Personal informationNational team ItalyBorn (1994-06-19) 19 June 1994 (age 30)Tunis, TunisiaHeight1.80 m (5 ft 11 in)Weight57 kg (126 lb)SportSportAthleticsEvent(s)Middle-distance running3000 metres steeplechaseClubCus PalermoCoached byGaspare PolizziAchievements and titlesPersonal best 3000 m steeplechase 8:24.98 (2021) Ala Zoghlami (Arabic: علاء الزغلامي; born 19 June ...