Experiment (probability theory)

In probability theory, an experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space.[1] An experiment is said to be random if it has more than one possible outcome, and deterministic if it has only one. A random experiment that has exactly two (mutually exclusive) possible outcomes is known as a Bernoulli trial.[2]

When an experiment is conducted, one (and only one) outcome results— although this outcome may be included in any number of events, all of which would be said to have occurred on that trial. After conducting many trials of the same experiment and pooling the results, an experimenter can begin to assess the empirical probabilities of the various outcomes and events that can occur in the experiment and apply the methods of statistical analysis.

Experiments and trials

Random experiments are often conducted repeatedly, so that the collective results may be subjected to statistical analysis. A fixed number of repetitions of the same experiment can be thought of as a composed experiment, in which case the individual repetitions are called trials. For example, if one were to toss the same coin one hundred times and record each result, each toss would be considered a trial within the experiment composed of all hundred tosses.[3]

Mathematical description

A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind.

A mathematical description of an experiment consists of three parts:

  1. A sample space, Ω (or S), which is the set of all possible outcomes.
  2. A set of events , where each event is a set containing zero or more outcomes.
  3. The assignment of probabilities to the events—that is, a function P mapping from events to probabilities.

An outcome is the result of a single execution of the model. Since individual outcomes might be of little practical use, more complicated events are used to characterize groups of outcomes. The collection of all such events is a sigma-algebra . Finally, there is a need to specify each event's likelihood of happening; this is done using the probability measure function, P.

Once an experiment is designed and established, ω from the sample space Ω, all the events in that contain the selected outcome ω (recall that each event is a subset of Ω) are said to “have occurred”. The probability function P is defined in such a way that, if the experiment were to be repeated an infinite number of times, the relative frequencies of occurrence of each of the events would approach agreement with the values P assigns them.

As a simple experiment, we may flip a coin twice. The sample space (where the order of the two flips is relevant) is {(H, T), (T, H), (T, T), (H, H)} where "H" means "heads" and "T" means "tails". Note that each of (H, T), (T, H), ... are possible outcomes of the experiment. We may define an event which occurs when a "heads" occurs in either of the two flips. This event contains all of the outcomes except (T, T).

See also

References

  1. ^ Albert, Jim (21 January 1998). "Listing All Possible Outcomes (The Sample Space)". Bowling Green State University. Archived from the original on 16 October 2000. Retrieved June 25, 2013.
  2. ^ Papoulis, Athanasios (1984). "Bernoulli Trials". Probability, Random Variables, and Stochastic Processes (2nd ed.). New York: McGraw-Hill. pp. 57–63.
  3. ^ "Trial, Experiment, Event, Result/Outcome - Probability". Future Accountant. Retrieved 22 July 2013.

Read other articles:

Graceful FriendsPoster promosiHangul우아한 친구들 Hanja優雅한 親舊들 GenreDramaMisteriPengembangJTBCDitulis olehPark Hyo-yeonKim Gyeong-seonSutradaraSong Hyun-wookPemeranYoo Jun-sangSong Yoon-ahBae Soo-binHan Eun-jungKim Sung-ohKim Hye-eunJung Suk-yongLee In-hyeKim Won-haeKim Ji-youngNegara asalKorea SelatanBahasa asliKoreaJmlh. episode17ProduksiDurasi70 menitRumah produksiStudio&NEWJCNJTBC StudiosDistributorJTBCRilis asliJaringanJTBCFormat gambar1080i (HDTV)Format audioDolby...

 

Ini adalah nama Batak Toba, marganya adalah Simanjuntak. Joshua Puji Mulia Simandjuntak Deputi Pemasaran Badan Ekonomi Kreatif Sunting kotak info • L • B Joshua Puji Mulia Simandjuntak adalah konsultan manajemen desain, perancang furnitur, dan Deputi Pemasaran Badan Ekonomi Kreatif (Bekraf) Republik Indonesia. Ia mengenyam pendidikan di Central St. Martin School of Art and Design, London, serta mendalami desain furnitur di Ravensbourne College dan desain industri dan produk di R...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...

1993 American filmThe SandlotOfficial franchise logo, as released in 1993.Based onOriginal characters created by David Mickey Evans Robert GunterDistributed by 20th Century Fox 20th Century Studios through: The Walt Disney Company Release date1993–presentCountryUnited StatesLanguageEnglishBox office$70,483,924 (cumulative of 3 released films)[a] The Sandlot franchise[1][2] consists of American coming-of-age sport-comedy installments including one theatrical film, and...

 

American politician Ralph F. LozierMember of the U.S. House of Representativesfrom MissouriIn officeMarch 4, 1923 – January 3, 1935Preceded byWilliam W. RuckerSucceeded byDistrict eliminatedConstituency2nd district (1923–1933)At-large (1933–1935) Personal detailsBorn(1866-01-28)January 28, 1866DiedMay 28, 1945(1945-05-28) (aged 79)Resting placeCarrollton, MissouriPolitical partyDemocrat Ralph Fulton Lozier (January 28, 1866 – May 28, 1945) was a U.S. Represen...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Inga and Anush Arshakyan – news · newspapers · books · scholar · JSTOR (October 2013) (Learn how and when to remove this template message) Inga & AnushBackground informationBirth nameInga ArshakyanAnush ArshakyanBorn (1982-03-18) 18 March 1982 (age 42...

Soviet drifting ice station in the Arctic Ocean, opened in 1937 Otto Schmidt and pilots of the aircraft of the North Pole-1 expedition to the North Pole, from left to right: Ivan Spirin, Mark Shevelev, Mikhail Babushkin, Otto Schmidt, Mikhail Vodopyanov, Anatoly Alekseev and Vasily Molokov, 1937 North Pole-1 (Russian: Северный полюс-1) was the world's first Soviet manned drifting station in the Arctic Ocean, primarily used for research. North Pole-1 was established on 21 May 1937...

 

American baseball player For other people named Jim Spencer, see Jim Spencer (disambiguation). Baseball player Jim SpencerFirst basemanBorn: (1947-07-30)July 30, 1947Hanover, Pennsylvania, U.S.Died: February 10, 2002(2002-02-10) (aged 54)Fort Lauderdale, Florida, U.S.Batted: LeftThrew: LeftMLB debutSeptember 7, 1968, for the California AngelsLast MLB appearanceJune 20, 1982, for the Oakland AthleticsMLB statisticsBatting average.250Home runs146Runs batted in...

 

Ini adalah nama Maluku, Ambon, marganya adalah Matulessy Thomas MatulessyGambar Kapitan Pattimura diabadikan dalam salah satu perangkoJulukanKapitan PattimuraLahir(1783-06-08)8 Juni 1783 Hindia Belanda Haria, Saparua, Maluku TengahMeninggal16 Desember 1817(1817-12-16) (umur 34) Hindia Belanda Victoria, Ambon, Kepulauan MalukuPengabdian Maluku BritaniaDinas/cabang Angkatan Darat KerajaanPangkatSersan MayorPerang/pertempuranPerang PattimuraPenghargaanPahlawan Nasional Indonesia (...

Invasi Portugal ketiga ke Kerajaan JaffnaBagian dari Peperangan Kerajaan JaffnaPeta zaman kolonial Kerajaan Jaffna, sekitar tahun 1619Tanggal1619 –LokasiNallur, JaffnaHasil Kemenangan menentukan bagi Portugal Portugal merebut ibu kota Raja Cankili II menjadi tahanan perang, dan kemudian digantung mati Kejatuhan Kerajaan Jaffna Serangan Kandy dipukul mundurPihak terlibat Imperium Portugal Kerajaan Jaffna Kerajaan KandyTokoh dan pemimpin Phillippe de OliveiraConstantino de Sá de Noronha Cank...

 

American baseball player Baseball player Morgan EnsbergThird basemanBorn: (1975-08-26) August 26, 1975 (age 48)Hermosa Beach, California, U.S.Batted: RightThrew: RightMLB debutSeptember 20, 2000, for the Houston AstrosLast MLB appearanceMay 25, 2008, for the New York YankeesMLB statisticsBatting average.263Home runs110Runs batted in347 Teams Houston Astros (2000–2007) San Diego Padres (2007) New York Yankees (2008) Career highlights and awards All-Star (20...

 

Peta menunjukan lokasi Casiguran Data sensus penduduk di Casiguran Tahun Populasi Persentase 199519.578—200021.4591.99%200722.4030.60% Casiguran adalah munisipalitas yang terletak di provinsi Aurora, Filipina. Pada tahun 2000, munisipalitas ini memiliki populasi sebesar 22.403 jiwa atau 4.366 rumah tangga. Pembagian wilayah Casiguran terbagi menjadi 24 barangay, yaitu: Calabgan Calangcuasan Calantas Culat Dibet Esperanza Lual Marikit Tabas Tinib Bianuan Cozo Dibacong Ditinagyan Esteves San ...

Protein family SynaptobrevinThree different views of the high resolution structure of a truncated neuronal SNARE complex. Legend: synaptobrevin-2 (red), Syntaxin-1 (pink), SNAP-25 (purple).IdentifiersSymbolSynaptobrevinPfamPF00957InterProIPR016444PROSITEPDOC00368SCOP21sfc / SCOPe / SUPFAMOPM superfamily197OPM protein4wy4Membranome198Available protein structures:Pfam  structures / ECOD  PDBRCSB PDB; PDBe; PDBjPDBsumstructure summary Hypothetic models of VAMP2 conformations and engage...

 

Lambang bintang pertama kali dipopulerkan oleh klub Juventus tahun 1958.[1] Dalam sepak bola, beberapa tim nasional dan klub memasukkan satu atau lebih bintang sebagai bagian dari (di atas atau di samping) lencana (sering disebut sebagai crest) pada baju seragam mereka, untuk mewakili trofi penting yang pernah dimenangkan oleh tim tersebut. Hal ini sering kali merupakan keputusan sepihak oleh tim itu sendiri, daripada hak khusus yang diperoleh atau disetujui oleh organisasi sepak bola...

 

Census-designated place in Texas, United StatesFort Davis, TexasCensus-designated placeJeff Davis County Courthouse, located in Fort DavisLocation of Fort Davis, TexasCoordinates: 30°35′34″N 103°53′31″W / 30.59278°N 103.89194°W / 30.59278; -103.89194CountryUnited StatesStateTexasCountyJeff DavisArea • Total10.1 sq mi (26.1 km2) • Land10.1 sq mi (26.1 km2) • Water0.0 sq mi (0.0 ...

This article is about the men's records. For the women's records, see List of women's Test cricket records. Donald Bradman, holder of several Test batting records including highest batting average Sachin Tendulkar, the leading run-scorer and century maker in Test cricket Muttiah Muralitharan, the highest wicket-taker in Test cricket George Lohmann, the holder of best bowling average in Test cricket Test cricket is played between international cricket teams who are Full Members of the Interna...

 

English town planner (1879–1957) This article is about the town planner. For the Scottish physician, see Patrick Abercromby. SirPatrick AbercrombieFRIBABornLeslie Patrick Abercrombie(1879-06-06)6 June 1879Ashton upon Mersey, Cheshire, EnglandDied23 March 1957(1957-03-23) (aged 77)Aston Tirrold, Oxfordshire, EnglandOccupation(s)Architect, Planner, Professor, Theorist.Known forCreating LondonSpouse Emily Maud Gordon ​ ​(m. 1908; died 1942)&#...

 

حسن أبو لبدة مناصب معلومات شخصية اسم الولادة حسن إبراهيم حسن أبو لبدة  الميلاد 8 نوفمبر 1954 (70 سنة)  عرابة  مواطنة دولة فلسطين  الحياة العملية المدرسة الأم جامعة بيرزيت (التخصص:رياضيات) (الشهادة:بكالوريوس) (–1979)جامعة ستانفورد (التخصص:إحصاء رياضي) (الشهادة:ماجستير) (–...

Chinese painter (1686–1772) Zou Yigui's colophon painting to the Song dynasty Palace Museum version of the Admonitions Scroll, 1746. Zou Yigui (simplified Chinese: 邹一桂; traditional Chinese: 鄒一桂; pinyin: Zōu Yīguì; Wade–Giles: Tsou I-kui) (1686–1772), style name as Yuanbao (原褒), sobriquet as Xiaoshan (小山) and Erzhi (二知), is a famed Chinese painter in Qing dynasty. He was born in Wuxi, Jiangsu Province.[1] He painted for the imperial ...

 

Swedish professional a cappella group This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Riltons Vänner – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) Riltons Vänner (Rilton's Friends) is a Swedish professional a cappella group. The group was based in Stockholm and was formed in 1999. The band disba...