Excellent ring

In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal.

The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; Hironaka (1964) showed this in characteristic 0, but the positive characteristic case is (as of 2024) still a major open problem. Essentially all Noetherian rings that occur naturally in algebraic geometry or number theory are excellent; in fact it is quite hard to construct examples of Noetherian rings that are not excellent.

Definitions

The definition of excellent rings is quite involved, so we recall the definitions of the technical conditions it satisfies. Although it seems like a long list of conditions, most rings in practice are excellent, such as fields, polynomial rings, complete Noetherian rings, Dedekind domains over characteristic 0 (such as ), and quotient and localization rings of these rings.

Recalled definitions

  • A ring containing a field is called geometrically regular over if for any finite extension of the ring is regular.
  • A homomorphism of rings from is called regular if it is flat and for every the fiber is geometrically regular over the residue field of .
  • A ring is called a G-ring[1] (or Grothendieck ring) if it is Noetherian and its formal fibers are geometrically regular; this means that for any , the map from the local ring to its completion is regular in the sense above.

Finally, a ring is J-2[2] if any finite type -algebra is J-1, meaning the regular subscheme is open.

Definition of (quasi-)excellence

A ring is called quasi-excellent if it is a G-ring and J-2 ring. It is called excellent[3]pg 214 if it is quasi-excellent and universally catenary. In practice almost all Noetherian rings are universally catenary, so there is little difference between excellent and quasi-excellent rings.

A scheme is called excellent or quasi-excellent if it has a cover by open affine subschemes with the same property, which implies that every open affine subscheme has this property.

Properties

Because an excellent ring is a G-ring,[1] it is Noetherian by definition. Because it is universally catenary, every maximal chain of prime ideals has the same length. This is useful for studying the dimension theory of such rings because their dimension can be bounded by a fixed maximal chain. In practice, this means infinite-dimensional Noetherian rings[4] which have an inductive definition of maximal chains of prime ideals, giving an infinite-dimensional ring, cannot be constructed.

Schemes

Given an excellent scheme and a locally finite type morphism , then is excellent[3]pg 217.

Quasi-excellence

Any quasi-excellent ring is a Nagata ring.

Any quasi-excellent reduced local ring is analytically reduced.

Any quasi-excellent normal local ring is analytically normal.

Examples

Excellent rings

Most naturally occurring commutative rings in number theory or algebraic geometry are excellent. In particular:

  • All complete Noetherian local rings, for instance all fields and the ring Zp of p-adic integers, are excellent.
  • All Dedekind domains of characteristic 0 are excellent. In particular the ring Z of integers is excellent. Dedekind domains over fields of characteristic greater than 0 need not be excellent.
  • The rings of convergent power series in a finite number of variables over R or C are excellent.
  • Any localization of an excellent ring is excellent.
  • Any finitely generated algebra over an excellent ring is excellent. This includes all polynomial algebras with excellent. This means most rings considered in algebraic geometry are excellent.

A J-2 ring that is not a G-ring

Here is an example of a discrete valuation ring A of dimension 1 and characteristic p > 0 which is J-2 but not a G-ring and so is not quasi-excellent. If k is any field of characteristic p with [k : kp] = ∞ and A is the ring of power series Σaixi such that [kp(a0, a1, ...) : kp] is finite then the formal fibers of A are not all geometrically regular so A is not a G-ring. It is a J-2 ring as all Noetherian local rings of dimension at most 1 are J-2 rings. It is also universally catenary as it is a Dedekind domain. Here kp denotes the image of k under the Frobenius morphism aap.

A G-ring that is not a J-2 ring

Here is an example of a ring that is a G-ring but not a J-2 ring and so not quasi-excellent. If R is the subring of the polynomial ring k[x1,x2,...] in infinitely many generators generated by the squares and cubes of all generators, and S is obtained from R by adjoining inverses to all elements not in any of the ideals generated by some xn, then S is a 1-dimensional Noetherian domain that is not a J-1 ring as S has a cusp singularity at every closed point, so the set of singular points is not closed, though it is a G-ring. This ring is also universally catenary, as its localization at every prime ideal is a quotient of a regular ring.

A quasi-excellent ring that is not excellent

Nagata's example of a 2-dimensional Noetherian local ring that is catenary but not universally catenary is a G-ring, and is also a J-2 ring as any local G-ring is a J-2 ring (Matsumura 1980, p.88, 260). So it is a quasi-excellent catenary local ring that is not excellent.

Resolution of singularities

Quasi-excellent rings are closely related to the problem of resolution of singularities, and this seems to have been Grothendieck's motivation[3]pg 218 for defining them. Grothendieck (1965) observed that if it is possible to resolve singularities of all complete integral local Noetherian rings, then it is possible to resolve the singularities of all reduced quasi-excellent rings. Hironaka (1964) proved this for all complete integral Noetherian local rings over a field of characteristic 0, which implies his theorem that all singularities of excellent schemes over a field of characteristic 0 can be resolved. Conversely if it is possible to resolve all singularities of the spectra of all integral finite algebras over a Noetherian ring R then the ring R is quasi-excellent.

See also

References

  1. ^ a b "Section 15.49 (07GG): G-rings—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-07-24.
  2. ^ "Section 15.46 (07P6): The singular locus—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-07-24.
  3. ^ a b c Grothendieck, Alexander (1965). "Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Seconde partie". Publications Mathématiques de l'IHÉS. 24: 5–231.
  4. ^ "Section 108.14 (02JC): A Noetherian ring of infinite dimension—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-07-24.

Read other articles:

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Billboard Year-End Hot 100 singles of 2023 – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) Last Night by Morgan Wallen came in at number one in the Year-End list.[1] He has the most songs of any artist on the list with eight, all o...

 

Karur was built on the banks of River Amaravathi which was called Aanporunai during the Sangam days. The names of the early Chera kings who ruled from Karur, have been found in the rock inscriptions in Aru Nattar Malai close to Karur. The Tamil epic Silapathikaram mentions that the famous Chera King Senguttuvan ruled from Karur. The ancient Greek scholar Ptolemy is said to have known Karur by the name Korevera[1] or Kāroura,[2] placing it as a major trading centre in the reg...

 

The Disaster ArtistPoster film The Disaster ArtistSutradaraJames FrancoProduserJames FrancoVince JolivetteSeth RogenEvan GoldbergJames WeaverDitulis olehScott NeustadterMichael H. WeberBerdasarkanThe Disaster Artist: My Life Inside The Room, the Greatest Bad Movie Ever Madeoleh Greg Sestero dan Tom BissellPemeranJames FrancoDave FrancoSeth RogenAlison BrieAri GraynorJosh HutchersonJacki WeaverPenata musikDave PorterSinematograferBrandon TrostPenyuntingStacey SchroederPerusahaanproduksiN...

Artikel ini bukan mengenai Tracey Ellis atau Tracey Ross. Tracee Ellis Loraine RossRoss pada tahun 2018LahirTracee Joy Silberstein29 September 1972 (umur 51)Los Angeles, California, Amerika SerikatAlmamaterUniversitas Brown (BA)Pekerjaan Pemeran penyanyi pembawa acara televisi produser Tahun aktif1996–sekarangOrang tuaRobert Ellis SilbersteinDiana RossKerabat Rhonda Ross Kendrick (saudara tiri) Evan Ross (saudara tiri) Barbara Ross-Lee (bibi) Situs webtraceeellisross.com Tracee Jo...

 

British activist This article is about the evangelist. For the actress married to Lord Francis Hope, see May Yohé. Elizabeth HopeBornElizabeth Reid Cotton9 December 1842Tasmania, AustraliaDied8 March 1922(1922-03-08) (aged 79)Sydney, AustraliaNationalityBritishOther namesLady Hope, Elizabeth DennyOccupationEvangelistKnown forTemperance movementSpouse(s)Admiral James HopeThomas A. Denny Elizabeth Reid Cotton,[1] (9 December 1842 – 8 March 1922) who became Lady Hope wh...

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

Video game genre This article is about the video game genre. For the Nokia phone game in that genre, see Snake (1998 video game). Snake on a TRS-80 Snake is a sub-genre of action video games where the player maneuvers the end of a growing line, often themed as a snake. The player must keep the snake from colliding with both other obstacles and itself, which gets harder as the snake lengthens. It originated in the 1976 two-player arcade video game Blockade from Gremlin Industries where the goa...

 

American college basketball season 2008–09 New Mexico Lobos men's basketballMountain West Regular Season Co–Champions2009 NIT, Second RoundConferenceMountain West ConferenceRecord22–12 (12–4 Mountain West)Head coachSteve Alford (2nd Year)Assistant coaches Craig Neal (2nd Year) Wyking Jones Ryan Miller Home arenaThe Pit, University ArenaSeasons← 2007–082009–10 → 2008–09 Mountain West Conference men's basketball standings vte Conf Overal...

 

Ray Kennedy Informasi pribadiNama lengkap Raymond Kennedy[1]Tanggal lahir (1951-07-28)28 Juli 1951Tempat lahir Seaton Delaval, Northumberland, InggrisTanggal meninggal 30 November 2021(2021-11-30) (umur 70)Tinggi 5 ft 11 in (1,80 m)[2]Posisi bermain Gelandang, penyerang tengahKarier junior1966–1967 Port Vale1967–1968 New Hartley Juniors1968 ArsenalKarier senior*Tahun Tim Tampil (Gol)1968–1974 Arsenal 158 (53)1974–1982 Liverpool 275 (51)1982–1983 ...

Sekretariat Jenderal Komisi YudisialRepublik IndonesiaGambaran umumDibentuk13 Agustus 2004Dasar hukumUndang-Undang Nomor 22 Tahun 2004Peraturan Presiden Nomor 68 Tahun 2012Susunan organisasiSekretaris JenderalDr .Ir .Tubagus Rismunandar, MT. ME[1]Kepala Biro / PusatBiro Rekrutmen, Advokasi, dan Peningkatan Kapasitas HakimArie Sudihar, S.H., M.Hum.[1]Biro Pengawasan Perilaku HakimPlt. Arie Sudihar, S.H., M.Hum.[1]Biro InvestigasiHandarbeni Sayekti, S.H., M.H.[1]...

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

У этого термина существуют и другие значения, см. Гермес (значения). Статьи о герметизмеГерметизмПантеон Гермес Трисмегист Тот Гермес Меркурий Германубис Агатодемон Амон Асклепий Исида Гор Главные книги Герметический корпус Поймандр Асклепий Изумрудная скрижаль Пикат...

Pierre MutzFonctionsPréfet de Paris25 mai 2007 - 9 octobre 2008Bertrand LandrieuDaniel CanepaPréfet de police de Paris8 novembre 2004 - 25 mai 2007Jean-Paul ProustMichel GaudinDirecteur général de la Gendarmerie nationale16 mai 2002 - 8 novembre 2004Pierre SteinmetzGuy ParayrePréfet de la Haute-Vienne27 janvier 2000 - 25 juin 2002Michel DiefenbacherPaul Roncière (d)Préfet de l'Essonne1996-2000BiographieNaissance 15 novembre 1942 (81 ans)Tournon-d'AgenaisNationalité françaiseActi...

 

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

 

国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚  吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...

محتوى هذه المقالة بحاجة للتحديث. فضلًا، ساعد بتحديثه ليعكس الأحداث الأخيرة وليشمل المعلومات الموثوقة المتاحة حديثًا. (أبريل 2019)   لمعانٍ أخرى، طالع آسيا (توضيح). آسيا     الإحداثيات 43°40′52″N 87°19′52″E / 43.681111111111°N 87.331111111111°E / 43.681111111111; 87.331111111111   سبب الت...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (August 2023) This article may require copy editing for grammar, style, cohesion, tone, or spelling. You can assist by editing it. (August 2023) (Learn how and when to remove this message) (Learn how and w...

 

Stemma Officer Training School La Air Force Officer Training School (OTS) è un programma per la formazione di ufficiali USAF con sede presso Maxwell Air Force Base a Montgomery (Alabama). È de facto l'attuale programma Officer Candidate School (OCS) per la U.S. Air Force, analogo ai programmi OCS gestiti dagli altri rami delle forze armate USA. Indice 1 Sguardo d'insieme 2 Struttura 3 Total Force Officer Training 4 Commissioned Officer Training 5 Storia dell'OTS 6 Note 7 Altri progetti 8 Co...

  لمعانٍ أخرى، طالع تشارلز مارتن (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) تشارلز مارتن (بالإنجليزية: Charles Martin)‏  معلومات شخصية تاريخ الميلاد 12 يوليو 1931   تاريخ الوفاة 8 ديسمبر 2012 (81 سن�...

 

Tribe of palms Euterpeae Oenocarpus bataua Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Arecales Family: Arecaceae Subfamily: Arecoideae Tribe: Euterpeae Type genus  Euterpe  Euterpeae is a tribe of Neotropical plants in the family Arecaceae. Genera in the tribe are:[1][2] Hyospathe – northern South America Euterpe – South America, Central America Prestoea – northern South America, ...