Local ring

In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal.

The concept of local rings was introduced by Wolfgang Krull in 1938 under the name Stellenringe.[1] The English term local ring is due to Zariski.[2]

Definition and first consequences

A ring R is a local ring if it has any one of the following equivalent properties:

  • R has a unique maximal left ideal.
  • R has a unique maximal right ideal.
  • 1 ≠ 0 and the sum of any two non-units in R is a non-unit.
  • 1 ≠ 0 and if x is any element of R, then x or 1 − x is a unit.
  • If a finite sum is a unit, then it has a term that is a unit (this says in particular that the empty sum cannot be a unit, so it implies 1 ≠ 0).

If these properties hold, then the unique maximal left ideal coincides with the unique maximal right ideal and with the ring's Jacobson radical. The third of the properties listed above says that the set of non-units in a local ring forms a (proper) ideal,[3] necessarily contained in the Jacobson radical. The fourth property can be paraphrased as follows: a ring R is local if and only if there do not exist two coprime proper (principal) (left) ideals, where two ideals I1, I2 are called coprime if R = I1 + I2.

[4] In the case of commutative rings, one does not have to distinguish between left, right and two-sided ideals: a commutative ring is local if and only if it has a unique maximal ideal. Before about 1960 many authors required that a local ring be (left and right) Noetherian, and (possibly non-Noetherian) local rings were called quasi-local rings. In this article this requirement is not imposed.

A local ring that is an integral domain is called a local domain.

Examples

  • All fields (and skew fields) are local rings, since {0} is the only maximal ideal in these rings.
  • The ring is a local ring (p prime, n ≥ 1). The unique maximal ideal consists of all multiples of p.
  • More generally, a nonzero ring in which every element is either a unit or nilpotent is a local ring.
  • An important class of local rings are discrete valuation rings, which are local principal ideal domains that are not fields.
  • The ring , whose elements are infinite series where multiplications are given by such that , is local. Its unique maximal ideal consists of all elements that are not invertible. In other words, it consists of all elements with constant term zero.
  • More generally, every ring of formal power series over a local ring is local; the maximal ideal consists of those power series with constant term in the maximal ideal of the base ring.
  • Similarly, the algebra of dual numbers over any field is local. More generally, if F is a local ring and n is a positive integer, then the quotient ring F[X]/(Xn) is local with maximal ideal consisting of the classes of polynomials with constant term belonging to the maximal ideal of F, since one can use a geometric series to invert all other polynomials modulo Xn. If F is a field, then elements of F[X]/(Xn) are either nilpotent or invertible. (The dual numbers over F correspond to the case n = 2.)
  • Nonzero quotient rings of local rings are local.
  • The ring of rational numbers with odd denominator is local; its maximal ideal consists of the fractions with even numerator and odd denominator. It is the integers localized at 2.
  • More generally, given any commutative ring R and any prime ideal P of R, the localization of R at P is local; the maximal ideal is the ideal generated by P in this localization; that is, the maximal ideal consists of all elements a/s with aP and sR - P.

Non-examples

  • The ring of polynomials over a field is not local, since and are non-units, but their sum is a unit.
  • The ring of integers is not local since it has a maximal ideal for every prime .
  • /(pq), where p and q are distinct prime numbers. Both (p) and (q) are maximal ideals here.

Ring of germs

To motivate the name "local" for these rings, we consider real-valued continuous functions defined on some open interval around 0 of the real line. We are only interested in the behavior of these functions near 0 (their "local behavior") and we will therefore identify two functions if they agree on some (possibly very small) open interval around 0. This identification defines an equivalence relation, and the equivalence classes are what are called the "germs of real-valued continuous functions at 0". These germs can be added and multiplied and form a commutative ring.

To see that this ring of germs is local, we need to characterize its invertible elements. A germ f is invertible if and only if f(0) ≠ 0. The reason: if f(0) ≠ 0, then by continuity there is an open interval around 0 where f is non-zero, and we can form the function g(x) = 1/f(x) on this interval. The function g gives rise to a germ, and the product of fg is equal to 1. (Conversely, if f is invertible, then there is some g such that f(0)g(0) = 1, hence f(0) ≠ 0.)

With this characterization, it is clear that the sum of any two non-invertible germs is again non-invertible, and we have a commutative local ring. The maximal ideal of this ring consists precisely of those germs f with f(0) = 0.

Exactly the same arguments work for the ring of germs of continuous real-valued functions on any topological space at a given point, or the ring of germs of differentiable functions on any differentiable manifold at a given point, or the ring of germs of rational functions on any algebraic variety at a given point. All these rings are therefore local. These examples help to explain why schemes, the generalizations of varieties, are defined as special locally ringed spaces.

Valuation theory

Local rings play a major role in valuation theory. By definition, a valuation ring of a field K is a subring R such that for every non-zero element x of K, at least one of x and x−1 is in R. Any such subring will be a local ring. For example, the ring of rational numbers with odd denominator (mentioned above) is a valuation ring in .

Given a field K, which may or may not be a function field, we may look for local rings in it. If K were indeed the function field of an algebraic variety V, then for each point P of V we could try to define a valuation ring R of functions "defined at" P. In cases where V has dimension 2 or more there is a difficulty that is seen this way: if F and G are rational functions on V with

F(P) = G(P) = 0,

the function

F/G

is an indeterminate form at P. Considering a simple example, such as

Y/X,

approached along a line

Y = tX,

one sees that the value at P is a concept without a simple definition. It is replaced by using valuations.

Non-commutative

Non-commutative local rings arise naturally as endomorphism rings in the study of direct sum decompositions of modules over some other rings. Specifically, if the endomorphism ring of the module M is local, then M is indecomposable; conversely, if the module M has finite length and is indecomposable, then its endomorphism ring is local.

If k is a field of characteristic p > 0 and G is a finite p-group, then the group algebra kG is local.

Some facts and definitions

Commutative case

We also write (R, m) for a commutative local ring R with maximal ideal m. Every such ring becomes a topological ring in a natural way if one takes the powers of m as a neighborhood base of 0. This is the m-adic topology on R. If (R, m) is a commutative Noetherian local ring, then

(Krull's intersection theorem), and it follows that R with the m-adic topology is a Hausdorff space. The theorem is a consequence of the Artin–Rees lemma together with Nakayama's lemma, and, as such, the "Noetherian" assumption is crucial. Indeed, let R be the ring of germs of infinitely differentiable functions at 0 in the real line and m be the maximal ideal . Then a nonzero function belongs to for any n, since that function divided by is still smooth.

As for any topological ring, one can ask whether (R, m) is complete (as a uniform space); if it is not, one considers its completion, again a local ring. Complete Noetherian local rings are classified by the Cohen structure theorem.

In algebraic geometry, especially when R is the local ring of a scheme at some point P, R / m is called the residue field of the local ring or residue field of the point P.

If (R, m) and (S, n) are local rings, then a local ring homomorphism from R to S is a ring homomorphism f : RS with the property f(m) ⊆ n.[5] These are precisely the ring homomorphisms that are continuous with respect to the given topologies on R and S. For example, consider the ring morphism sending . The preimage of is . Another example of a local ring morphism is given by .

General case

The Jacobson radical m of a local ring R (which is equal to the unique maximal left ideal and also to the unique maximal right ideal) consists precisely of the non-units of the ring; furthermore, it is the unique maximal two-sided ideal of R. However, in the non-commutative case, having a unique maximal two-sided ideal is not equivalent to being local.[6]

For an element x of the local ring R, the following are equivalent:

  • x has a left inverse
  • x has a right inverse
  • x is invertible
  • x is not in m.

If (R, m) is local, then the factor ring R/m is a skew field. If JR is any two-sided ideal in R, then the factor ring R/J is again local, with maximal ideal m/J.

A deep theorem by Irving Kaplansky says that any projective module over a local ring is free, though the case where the module is finitely-generated is a simple corollary to Nakayama's lemma. This has an interesting consequence in terms of Morita equivalence. Namely, if P is a finitely generated projective R module, then P is isomorphic to the free module Rn, and hence the ring of endomorphisms is isomorphic to the full ring of matrices . Since every ring Morita equivalent to the local ring R is of the form for such a P, the conclusion is that the only rings Morita equivalent to a local ring R are (isomorphic to) the matrix rings over R.

Notes

  1. ^ Krull, Wolfgang (1938). "Dimensionstheorie in Stellenringen". J. Reine Angew. Math. (in German). 1938 (179): 204. doi:10.1515/crll.1938.179.204. S2CID 115691729.
  2. ^ Zariski, Oscar (May 1943). "Foundations of a General Theory of Birational Correspondences" (PDF). Trans. Amer. Math. Soc. 53 (3). American Mathematical Society: 490–542 [497]. doi:10.2307/1990215. JSTOR 1990215.
  3. ^ Lam (2001), p. 295, Thm. 19.1.
  4. ^ Weisstein, Eric W. "Local Ring". mathworld.wolfram.com. Retrieved 2024-08-26.
  5. ^ "Tag 07BI".
  6. ^ The 2 by 2 matrices over a field, for example, has unique maximal ideal {0}, but it has multiple maximal right and left ideals.

References

See also

Read other articles:

Dalam nama Tionghoa ini, nama keluarganya adalah Lou. Lou Jiahui Lou pada 2018Informasi pribadiTanggal lahir 26 Mei 1991 (umur 32)Tempat lahir TiongkokTinggi 167 m (547 ft 11 in)[1]Posisi bermain Pemain tengahInformasi klubKlub saat ini Henan JianyeNomor 10Karier senior*Tahun Tim Tampil (Gol)????– Henan Jianye 0 (7)Tim nasional2008 U20 Tiongkok 3 (0)2008– Tiongkok 116 (4) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Lou Jiahui (Hanzi...

 

 

Åsa Romson Menteri Lingkungan HidupPetahanaMulai menjabat 3 Oktober 2014Penguasa monarkiCarl XVI GustafPerdana MenteriStefan Löfven PendahuluLena EkPenggantiPetahanaDeputi Perdana Menteri SwediaPetahanaMulai menjabat 3 Oktober 2014Penguasa monarkiCarl XVI GustafPerdana MenteriStefan Löfven PendahuluJan BjörklundPenggantiPetahanaPembicara Partai HijauPetahanaMulai menjabat 21 Mei 2011Menjabat bersama Gustav Fridolin PendahuluMaria WetterstrandPeter ErikssonPenggantiPeta...

 

 

العلاقات القيرغيزستانية الكوبية قيرغيزستان كوبا   قيرغيزستان   كوبا تعديل مصدري - تعديل   العلاقات القيرغيزستانية الكوبية هي العلاقات الثنائية التي تجمع بين قيرغيزستان وكوبا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين:...

Krisztina TóthPersonal informationNama lengkapToth KrisztinaJulukanKriszti, Kriszta, Tothi [1]Kebangsaan HungariaLahir29 Mei 1974 (umur 49)Miskolc, HungariaGaya bermainLeft-handed, shakehand gripEquipment(s)ButterflyPeringkat tertinggi13 (December 2003) [2]KlubFSV KroppachTinggi164 m (538 ft 1⁄2 in) Rekam medali Putri Tenis Meja Mewakili  Hungaria World Championships 1995 Tianjin Doubles World Cup 1995 Atlanta Team 2007 Magdeburg Team Europ...

 

 

Russian painter (1889–1970) Self-portrait (1911) Nathan Isaevich Altman Russian: Натан Исаевич Альтман, romanized: Natan Isayevich Altman; Ukrainian: Натан Ісайович Альтман; December 22 [O.S. December 10] 1889 – December 12, 1970) was a Russian avant-garde artist, Cubist painter, stage designer and book illustrator, who was born in Ukraine in the Russian Empire and worked in France and the Soviet Union.[1] Early life Al...

 

 

Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis. Dede Indra Permana SoediroS.H. Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019PresidenJoko WidodoDaerah pemilihanJawa Tengah X Informasi pribadiLahir9 Juni 1982 (umur 41)Semarang, Jawa TengahPartai politikPDI-PSuami/istriSilvia PutrianiAnak2Alma materUniversitas DiponegoroPekerjaanDirektur, PolitikusSu...

برويز قليج خاني معلومات شخصية الميلاد 4 ديسمبر 1945 (العمر 78 سنة)طهران الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب وسط الجنسية الدولة البهلوية  مسيرة الشباب سنوات فريق Adeeb Alborz المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1962–1968 كيان طهران 1968–1971 استقلال طهران 1971–1972 باس طهران 1972–1974 �...

 

 

Street in Paddington, west central London This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Praed Street – news · newspapers · books · scholar · JSTOR (October 2008) (Learn how and when to remove this template message) Praed StreetPraed Street in 2007Length0.4 mi (0.64 km)LocationPaddington, London, ...

 

 

Solvasi adalah proses dimana ion dan molekul dikelilingi oleh molekul pelarut yang memiliki susunan tertentu. Faktor yang dapat mempengaruhi solvasi adalah sifat zat terlarut dan sifat zat pelarut. Solvasi (Kelarutan) Solvasi atau larutan dapat diartikan sebagai sistem dimana molekul solut terlarut pada suatu pelarut. Air sering disebut dengan pelarut universal dan termasuk pelarut yang kuat. Komposisi zat terlarut dan zat pelarut dalam larutan dinyatakan konsentrasi larutan, sedangkan proses...

Economic activity This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tour operator – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this message) An open top double decker bus is used worldwide to provide sightseeing tours, such as this one in Washington, D. C., USA A tou...

 

 

Finnish imageboard You can help expand this article with text translated from the corresponding article in Finnish. (April 2016) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears...

 

 

US Open 2014 Sport Tennis Data 25 agosto – 8 settembre Edizione 134a Categoria Grande Slam (ITF) Superficie Cemento Località New York City, USA Impianto USTA Billie Jean King National Tennis Center, Flushing Meadows Campioni Singolare maschile Marin Čilić Singolare femminile Serena Williams Doppio maschile Bob Bryan / Mike Bryan Doppio femminile Ekaterina Makarova / Elena Vesnina Doppio misto Sania Mirza / Bruno Soares Singolare ragazzi Omar Jasika Singolare ragazze Marie Bouzková Dopp...

Peace treaty between Kingdom of Romania and the Central Powers For other treaties signed in Bucharest, see Treaty of Bucharest (disambiguation). Treaty of BucharestRomanian prime minister Alexandru Marghiloman signing the treatySigned7 May 1918LocationCotroceni Palace, Bucharest, Kingdom of Romania (under Central Powers' occupation since December 1916)ConditionRatification by Romania and the Central PowersSignatories Richard von Kühlmann Paul von Koerner [de] Johannes Kriege Gen...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Porsche 953 – news · newspapers · books · scholar · JSTOR (February 2019) The 1984 Paris-Dakar winning Porsche 953 driven by René Metge and Dominique Lemoyne. The Porsche 953 was a heavily modified variant of the 911, designed and built specifically ...

 

 

Міністерство оборони України (Міноборони) Емблема Міністерства оборони та Прапор Міністерства оборони Будівля Міністерства оборони у КиєвіЗагальна інформаціяКраїна  УкраїнаДата створення 24 серпня 1991Попередні відомства Міністерство оборони СРСР Народний комісарі...

Mountain range in the Central Eastern Alps Venediger GroupView from Kitzbühel AlpsHighest pointPeakGroßvenedigerElevation3,657 m (11,998 ft)Coordinates47°06′34″N 12°20′44″E / 47.10944°N 12.34556°E / 47.10944; 12.34556GeographyVenediger Group (in red) within the Alps.The borders of the range according toAlpine Club classification of the Eastern Alps CountriesAustria and ItalyStatesTyrol, Salzburg and South TyrolRange coordinates47°05′32�...

 

 

Combinational digital circuit A symbolic representation of an ALU and its input and output signals, indicated by arrows pointing into or out of the ALU, respectively. Each arrow represents one or more signals. Control signals enter from the left and status signals exit on the right; data flows from top to bottom. Part of a series onArithmetic logic circuits Quick navigation Theory Binary number Boolean algebra Logic gate Ones' complement number Two's complement number Signed number representa...

 

 

1999 Motor race held in Portland Grainger Industrial Supply 225KNASCAR Craftsman Truck SeriesVenuePortland International RacewayLocationPortland, Oregon45°35′49″N 122°41′45″W / 45.59694°N 122.69583°W / 45.59694; -122.69583Corporate sponsorGrainger Industrial SupplyFirst race1999Last race2000Distance143.591 miles (231 km) (1999)142.35 miles (229 km) (2000)Laps73 The Grainger Industrial Supply 225K was an annual NASCAR Craftsman Truck Series race he...

Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriage Incest taboo Endogamy Exogamy Moiety Monogamy Polygyny Polygamy Concubinage Polyandry Bride price Bride service Dowry Parallel / cross cousins Cousin marriage Levirate Sororate Posthumous marriage Joking relationship Clan Cohabitation Fictive / Milk / Nurture kinship Descent Cognatic / Bilateral Matrilateral Lineal Collateral House society Avunculate...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) فرناندو سوندرز معلومات شخصية الميلاد العقد 1950  ديترويت  مواطنة الولايات المتحدة  الأولاد أندراس كالي سوندرز  الحياة العملية المهنة عازف جاز،  و...