Euler's three-body problem

In physics and astronomy, Euler's three-body problem is to solve for the motion of a particle that is acted upon by the gravitational field of two other point masses that are fixed in space. It is a particular version of the three-body problem. This version of it is exactly solvable, and yields an approximate solution for particles moving in the gravitational fields of prolate and oblate spheroids. This problem is named after Leonhard Euler, who discussed it in memoirs published in 1760. Important extensions and analyses to the three body problem were contributed subsequently by Joseph-Louis Lagrange, Joseph Liouville, Pierre-Simon Laplace, Carl Gustav Jacob Jacobi, Urbain Le Verrier, William Rowan Hamilton, Henri Poincaré and George David Birkhoff, among others.[1] The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions[2] For convenience, the problem may also be solved by numerical methods, such as Runge–Kutta integration of the equations of motion. The total energy of the moving particle is conserved, but its linear and angular momentum are not, since the two fixed centers can apply a net force and torque. Nevertheless, the particle has a second conserved quantity that corresponds to the angular momentum or to the Laplace–Runge–Lenz vector as limiting cases.

Euler's problem also covers the case when the particle is acted upon by other inverse-square central forces, such as the electrostatic interaction described by Coulomb's law. The classical solutions of the Euler problem have been used to study chemical bonding, using a semiclassical approximation of the energy levels of a single electron moving in the field of two atomic nuclei, such as the diatomic ion HeH2+. This was first done by Wolfgang Pauli in 1921 in his doctoral dissertation under Arnold Sommerfeld, a study of the first ion of molecular hydrogen, namely the hydrogen molecular ion H2+.[3] These energy levels can be calculated with reasonable accuracy using the Einstein–Brillouin–Keller method, which is also the basis of the Bohr model of atomic hydrogen.[4][5] More recently, as explained further in the quantum-mechanical version, analytical solutions to the eigenvalues (energies) have been obtained: these are a generalization of the Lambert W function.

Various generalizations of Euler's problem are known; these generalizations add linear and inverse cubic forces and up to five centers of force. Special cases of these generalized problems include Darboux's problem[6] and Velde's problem.[7]

Overview and history

Euler's three-body problem is to describe the motion of a particle under the influence of two centers that attract the particle with central forces that decrease with distance as an inverse-square law, such as Newtonian gravity or Coulomb's law. Examples of Euler's problem include an electron moving in the electric field of two nuclei, such as the hydrogen molecule-ion H+2. The strength of the two inverse-square forces need not be equal; for illustration, the two nuclei may have different charges, as in the molecular ion HeH2+.

In Euler's three-body problem we assume that the two centres of attraction are stationary. This is not strictly true in a case like H+2, but the protons experience much less acceleration than the electron. However, the Euler three-body problem does not apply to a planet moving in the gravitational field of two stars, because in that case at least one of the stars experiences acceleration similar to that experienced by the planet.

This problem was first considered by Leonhard Euler, who showed that it had an exact solution in 1760.[8] Joseph Louis Lagrange solved a generalized problem in which the centers exert both linear and inverse-square forces.[9] Carl Gustav Jacob Jacobi showed that the rotation of the particle about the axis of the two fixed centers could be separated out, reducing the general three-dimensional problem to the planar problem.[10]

In 2008, Diarmuid Ó Mathúna published a book entitled "Integrable Systems in Celestial Mechanics". In this book, he gives closed form solutions for both the planar two fixed centers problem and the three dimensional problem.[11]

Constants of motion

The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion. The potential energy is given by

where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively. The total energy equals sum of this potential energy with the particle's kinetic energy

where and are the particle's mass and linear momentum, respectively.

The particle's linear and angular momentum are not conserved in Euler's problem, since the two centers of force act like external forces upon the particle, which may yield a net force and torque on the particle. Nevertheless, Euler's problem has a second constant of motion

where is the separation of the two centers of force, and are the angles of the lines connecting the particle to the centers of force, with respect to the line connecting the centers. This second constant of motion was identified by E. T. Whittaker in his work on analytical mechanics,[12] and generalized to dimensions by Coulson and Joseph in 1967.[13] In the Coulson–Joseph form, the constant of motion is written

where denotes the momentum component along the axis on which the attracting centers are located.[note 1] This constant of motion corresponds to the total angular momentum squared in the limit when the two centers of force converge to a single point (), and proportional to the Laplace–Runge–Lenz vector in the limit when one of the centers goes to infinity ( while remains finite).

Quantum mechanical version

A special case of the quantum mechanical three-body problem is the hydrogen molecule ion, H+
2
. Two of the three bodies are nuclei and the third is a fast moving electron. The two nuclei are 1800 times heavier than the electron and thus modeled as fixed centers. It is well known that the Schrödinger wave equation is separable in prolate spheroidal coordinates and can be decoupled into two ordinary differential equations coupled by the energy eigenvalue and a separation constant.[14] However, solutions required series expansions from basis sets. Nonetheless, through experimental mathematics, it was found that the energy eigenvalue was mathematically a generalization of the Lambert W function (see Lambert W function and references therein for more details). The hydrogen molecular ion in the case of clamped nuclei can be completely worked out within a Computer algebra system. The fact that its solution is an implicit function is revealing in itself. One of the successes of theoretical physics is not simply a matter that it is amenable to a mathematical treatment but that the algebraic equations involved can be symbolically manipulated until an analytical solution, preferably a closed form solution, is isolated. This type of solution for a special case of the three-body problem shows us the possibilities of what is possible as an analytical solution for the quantum three-body and many-body problem.

Generalizations

An exhaustive analysis of the soluble generalizations of Euler's three-body problem was carried out by Adam Hiltebeitel in 1911. The simplest generalization of Euler's three-body problem is to add a third center of force midway between the original two centers, that exerts only a linear Hooke force. The next generalization is to augment the inverse-square force laws with a force that increases linearly with distance. The final set of generalizations is to add two fixed centers of force at positions that are imaginary numbers, with forces that are both linear and inverse-square laws, together with a force parallel to the axis of imaginary centers and varying as the inverse cube of the distance to that axis.

The solution to the original Euler problem is an approximate solution for the motion of a particle in the gravitational field of a prolate body, i.e., a sphere that has been elongated in one direction, such as a cigar shape. The corresponding approximate solution for a particle moving in the field of an oblate spheroid (a sphere squashed in one direction) is obtained by making the positions of the two centers of force into imaginary numbers. The oblate spheroid solution is astronomically more important, since most planets, stars and galaxies are approximately oblate spheroids; prolate spheroids are very rare.

The analogue of the oblate case in general relativity is a Kerr black hole.[15] The geodesics around this object are known to be integrable, owing to the existence of a fourth constant of motion (in addition to energy, angular momentum, and the magnitude of four-momentum), known as the Carter constant. Euler's oblate three body problem and a Kerr black hole share the same mass moments, and this is most apparent if the metric for the latter is written in Kerr–Schild coordinates.

The analogue of the oblate case augmented with a linear Hooke term is a Kerr–de Sitter black hole. As in Hooke's law, the cosmological constant term depends linearly on distance from the origin, and the Kerr–de Sitter spacetime also admits a Carter-type constant quadratic in the momenta.[16]

Mathematical solutions

Original Euler problem

In the original Euler problem, the two centers of force acting on the particle are assumed to be fixed in space; let these centers be located along the x-axis at ±a. The particle is likewise assumed to be confined to a fixed plane containing the two centers of force. The potential energy of the particle in the field of these centers is given by

where the proportionality constants μ1 and μ2 may be positive or negative. The two centers of attraction can be considered as the foci of a set of ellipses. If either center were absent, the particle would move on one of these ellipses, as a solution of the Kepler problem. Therefore, according to Bonnet's theorem, the same ellipses are the solutions for the Euler problem.

Introducing elliptic coordinates,

the potential energy can be written as

and the kinetic energy as

This is a Liouville dynamical system if ξ and η are taken as φ1 and φ2, respectively; thus, the function Y equals

and the function W equals

Using the general solution for a Liouville dynamical system,[17] one obtains

Introducing a parameter u by the formula

gives the parametric solution

Since these are elliptic integrals, the coordinates ξ and η can be expressed as elliptic functions of u.

See also

Notes

  1. ^ The latter expression differs from the constant C above by the additional term

References

  1. ^ Carl D. Murray; Stanley F. Dermott (2000). Solar System Dynamics. Cambridge University Press. Chapter 3. ISBN 978-0-521-57597-3.
  2. ^ Francesco Biscani; Dario Izzo (2015). "A complete and explicit solution to the three-dimensional problem of two fixed centres". Monthly Notices of the Royal Astronomical Society. 455 (4): 3480–3493. arXiv:1510.07959. doi:10.1093/mnras/stv2512.
  3. ^ Pauli W (1922). "Über das Modell des Wasserstoffmolekülions". Annalen der Physik. 68 (11): 177–240. Bibcode:1922AnP...373..177P. doi:10.1002/andp.19223731102.
  4. ^ Knudson SK (2006). "The Old Quantum Theory for H2+: Some Chemical Implications". Journal of Chemical Education. 83 (3): 464–472. Bibcode:2006JChEd..83..464K. doi:10.1021/ed083p464.
  5. ^ Strand MP, Reinhardt WP (1979). "Semiclassical quantization of the low lying electronic states of H2+". Journal of Chemical Physics. 70 (8): 3812–3827. Bibcode:1979JChPh..70.3812S. doi:10.1063/1.437932.
  6. ^ Darboux JG, Archives Néerlandaises des Sciences (ser. 2), 6, 371–376
  7. ^ Velde (1889) Programm der ersten Höheren Bürgerschule zu Berlin
  8. ^ Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  9. ^ Lagrange JL, Miscellanea Taurinensia, 4, 118–243; Oeuvres, 2, pp. 67–121; Mécanique Analytique, 1st edition, pp. 262–286; 2nd edition, 2, pp. 108–121; Oeuvres, 12, pp. 101–114.
  10. ^ Jacobi CGJ, Vorlesungen ueber Dynamik, no. 29. Werke, Supplement, pp. 221–231
  11. ^ Ó'Mathúna, Diarmuid (2008-12-15). Integrable Systems in Celestial Mechanics. Springer Science & Business Media. ISBN 978-0-8176-4595-3.
  12. ^ Whittaker Analytical Dynamics of Particles and Rigid Bodies, p. 283.
  13. ^ Coulson CA, Joseph A (1967). "A Constant of Motion for the Two-Centre Kepler Problem". International Journal of Quantum Chemistry. 1 (4): 337–447. Bibcode:1967IJQC....1..337C. doi:10.1002/qua.560010405.
  14. ^ G.B. Arfken, Mathematical Methods for Physicists, 2nd ed., Academic Press, New York (1970).
  15. ^ Clifford M. Will, Phys. Rev. Lett. 102, 061101, 2009, https://doi.org/10.1103/PhysRevLett.102.061101
  16. ^ Charalampos Markakis, Constants of motion in stationary axisymmetric gravitational fields, MNRAS (July 11, 2014) 441 (4): 2974-2985. doi: 10.1093/mnras/stu715, https://arxiv.org/abs/1202.5228
  17. ^ Liouville J (1849). "Mémoire sur l'intégration des équations différentielles du mouvement d'un nombre quelconque de points matériels". Journal de Mathématiques Pures et Appliquées. 14: 257–299.

Further reading

Read other articles:

Gary PlayerPlayer pada 2008Informasi pribadiNama lengkapGary PlayerJulukanThe Black Knight,Mr. Fitness,International Ambassadorof GolfLahir1 November 1935 (umur 88)Johannesburg, Afrika SelatanTinggi5 ft 6 in (1,68 m)Berat150 pon (68 kg; 11 st)Kebangsaan Afrika SelatanTempat tinggalJupiter Island, Florida, A.S.Colesberg, Afrika SelatanPasanganVivienne Verwey (m. 1957-sekarang)AnakJennifer, Marc, Wayne, Michele, Theresa, AmandaKarierMenjadi pro1953Kejuara...

 

American astronaut (born 1951) For the New York politician, see Stephen Hawley. Steven HawleyBornSteven Alan Hawley (1951-12-12) December 12, 1951 (age 72)Ottawa, Kansas, U.S.EducationUniversity of Kansas (BS)University of California, Santa Cruz (MS, PhD)Spouse(s)Sally Ride (1982–1987)Eileen KeeganSpace careerNASA astronautTime in space32d 2h 42minSelectionNASA Group 8 (1978)MissionsSTS-41-DSTS-61-CSTS-31STS-82STS-93Mission insignia Steven Alan Hawley (born December 12, 1951) is a for...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Raúl CastroRaúl Castro di Meksiko pada 2015 Presiden KubaMasa jabatan24 Februari 2008 – 19 April 2018Penjabat Presiden31 Juli 2006 - 23 Februari 2008Wakil PresidenJosé Machado Ventura (I), Juan Almeida Bosque, Julio Casas Regueiro, Esteban Lazo Hernandez, Carlos Lage Dávila, Abelardo ColoméPendahuluFidel CastroPenggantiMiguel Díaz-Canel Informasi pribadiLahir3 Juni 1931 (umur 92)Birán, Provinsi Holguín, KubaPartai politikPartai Komunis KubaSuami/istriVilma Espín (1930...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Museum Seni Keramik TanteriDidirikan20 Mei 2011LokasiBanjar Simpangan, Desa Pejaten, Kecamatan Kediri, Kabupaten Tabanan, Bali - IndonesiaSitus webwww.museumtanteribali.commuseum.kemdikbud.go.id Museum Seni Keramik Tanteri adalah sebuah museum yang ter...

 

Arsip Nasional Republik Indonesia ANRIGambaran umumDidirikan28 Januari 1892 (Didirikan untuk pertama kalinya) 18 Mei 1971 (UU No 7 tahun 1971 keluar dan ANRI memiliki landasan hukum) 23 Oktober 2009 (UU No 43 Tahun 2009 disahkan dan memperbaharui UU no 7 tahun 1971)Dasar hukum Undang-Undang Nomor 43 Tahun 2009 Peraturan Presiden Nomor 23 Tahun 2023 Di bawah koordinasiMenteri Pemberdayaan Aparatur Negara dan Reformasi BirokrasiKepala ANRIImam GunartoSekretaris UtamaRini Agustian...

Gua Lubang K20Leang Lubang K20LokasiDusun Kappang, Desa Labuaja, Kecamatan Cenrana, Kabupaten Maros, Sulawesi Selatan, IndonesiaKedalaman130-160 meterGeologikarst / batu kapur / batu gampingFiturjenis gua vertikal berteras dengan lebar mulut gua antara 2–5 meterSitus webvisit.maroskab.go.idcagarbudaya.kemdikbud.go.id Gua Lubang K20' atau Leang Lubang K20' (Inggris: Lubang K20 Cave ) adalah sebuah gua di Kawasan Karst Maros-Pangkep, Taman Nasional Bantimurung-Bulusaraung, wilayah administrat...

 

American television sitcom Easy StreetGenreSitcomCreated byHugh WilsonAndy BorowitzStarringLoni AndersonJack ElamLee WeaverDana IveyJames CromwellArthur MaletOpening themeEasy Street performed by Linda JacksonComposerParmer FullerCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes22ProductionExecutive producersHugh WilsonAndy BorowitzCamera setupMulti-cameraRunning time30 minutesProduction companyViacom ProductionsOriginal releaseNetworkNBCReleaseSeptember 13,...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Sebuah ilustrasi dari fabel tersebut karya E. J. Detmold in The Fables of Aesop (1909) Pepohonan dan Semak Duri adalah sebuah judul yang meliputi sejumlah fabel dengan penekanan yang serupa, yang berasal dari tradisi sastra puisi debat Asia Barat antar dua unsur.[1] Fabel tumbuhan terkait lainnya adalah Pohon Oak dan Rumput Alang-alang dan Pohon Cemara dan Semak Duri. Fabel Salah satu Fabel Aesop bernomor 213 dalam Perry Index, mengisahkan sebuah pohon delima dan pohon apel memperdeba...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Football Club Dilettanti Battipagliese 1929. Gruppo Sportivo BarattaStagione 1940-1941Sport calcio Squadra Baratta Battipaglia Allenatore Filippo Prato Presidente Primo Baratta Serie C12º posto nel girone G 1939-1940 1941-1942 Si invita a seguire il modello di v...

 

Country in Northwestern Europe UK redirects here. For other uses, see United Kingdom (disambiguation) and UK (disambiguation). United Kingdom of Great Britain and Northern Ireland FlagAnthem: God Save the King[a]Coats of arms:Used in relation to Scotland (right) and elsewhere (left)Show globeShow map of EuropeShow British Overseas Territories and Crown DependenciesShow exclusive economic zonesCapitaland largest cityLondon51°30′N 0°7′W / 51.500°N 0.117°W&#x...

Person in attendance of a royal court Courtiers redirects here. For the brush-footed butterflies, see Sephisa. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Courtier – news · newspapers · books · scholar · JSTOR (September 2011) (Learn how and when to remove this message) Robert Dudley, 1st Earl of Leicest...

 

American historian For other people named Thomas Madden, see Thomas Madden (disambiguation). Thomas F. MaddenMadden in 2012Born (1960-06-10) 10 June 1960 (age 64)Phoenix, Arizona, U.S.NationalityAmericanAlma materUniversity of New Mexico (BA)University of Illinois (MA, PhD)OccupationHistorianEmployerSaint Louis UniversityTitleProfessor of History, Director of the Center for Medieval and Renaissance Studies, SLUWebsitehttp://www.thomasmadden.org Thomas Francis Madden[1] (born...

 

Series of British TV adaptations of the plays of Shakespeare BBC Television ShakespeareUK DVD Box-SetAlso known asThe Shakespeare Collection [UK]The Complete Dramatic Works of William Shakespeare [US]GenreComedy, Tragedy, HistoryCreated byCedric MessinaWritten byWilliam ShakespeareTheme music composerWilliam Walton (Seasons 1 & 2)Stephen Oliver (Seasons 3–5)Country of originUnited KingdomOriginal languageEnglishNo. of series7No. of episodes37ProductionProducersCedric Messina (Seasons 1 ...

Disambiguazione – Se stai cercando altri significati, vedi Bardolino (disambigua). Bardolinocomune Bardolino – VedutaPanorama di Bardolino LocalizzazioneStato Italia Regione Veneto Provincia Verona AmministrazioneSindacoDaniele Bertasi (lista civica Prima Bardolino Bertasi Sindaco) dal 10-6-2024 TerritorioCoordinate45°33′06″N 10°43′17″E45°33′06″N, 10°43′17″E (Bardolino) Altitudine65 m s.l.m. Superficie57,33 km² Abitanti6 872...

 

Race 2Poster rilis teatrikalSutradaraAbbas-MustanProduserRamesh S. TauraniDitulis olehKiran Kotrial (Dialog)SkenarioShiraz AhmedCeritaKiran KotrialShiraz AhmedPemeranSaif Ali KhanJohn AbrahamAnil KapoorDeepika PadukoneJacqueline FernandezAmeesha PatelAditya PancholiPenata musikLagu:PritamYo Yo Honey SinghMusik latar:Salim-SulaimanSinematograferRavi YadavPenyuntingHussain BurmawalaPerusahaanproduksiTips FilmsDistributorUTV Motion PicturesTanggal rilis 25 Januari 2013 (2013-01-25) Du...

 

Orang DardGadis Kalasha dengan pakaian tradisionalDaerah dengan populasi signifikanPakistan Utara (Gilgit-Baltistan, Khyber Pakhtunkhwa)Barat laut India (Jammu dan Kashmir, Ladakh)Timur AfganistanBahasaBahasa-bahasa DardikAgamaSebagian besar: Islam (Sunni, Syiah dan Sufi Noorbakhshia)[1]Minoritas: Hinduisme,[2] Hinduisme Kuno/Animisme (suku Kalash)[3]Kelompok etnik terkaitSuku-suku Indo-Arya lainnya Orang Dard adalah salah satu kelompok bangsa Indo-Arya yang banyak dit...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

King of the Bosporan Kingdom from 284 to 245 BC This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Paerisades II – news · newspapers · books · scholar · JSTOR (March 2024) (Learn how and when to remove this message) Paerisades IIKing of the Bosporan KingdomReign284–ca. 245 BCPredecessorSpartokos IIISuccessorSpartokos IVBornUnknownBosporan KingdomDiedcirc...